cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378145 Riordan triangle (1 + x * C(x), x * C(x)), where C(x) is g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 5, 10, 8, 4, 1, 14, 28, 23, 13, 5, 1, 42, 84, 70, 42, 19, 6, 1, 132, 264, 222, 138, 68, 26, 7, 1, 429, 858, 726, 462, 240, 102, 34, 8, 1, 1430, 2860, 2431, 1573, 847, 385, 145, 43, 9, 1, 4862, 9724, 8294, 5434, 3003, 1430, 583, 198, 53, 10, 1
Offset: 0

Views

Author

Werner Schulte, Nov 17 2024

Keywords

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k :     0     1     2     3    4    5    6   7  8  9
======================================================
  0 :     1
  1 :     1     1
  2 :     1     2     1
  3 :     2     4     3     1
  4 :     5    10     8     4    1
  5 :    14    28    23    13    5    1
  6 :    42    84    70    42   19    6    1
  7 :   132   264   222   138   68   26    7   1
  8 :   429   858   726   462  240  102   34   8  1
  9 :  1430  2860  2431  1573  847  385  145  43  9  1
  etc.
		

Crossrefs

Cf. A000108, A004070, A120588 (column 0), A068875 (column 1 and row sums), A000007 (alt. row sums).

Programs

  • PARI
    T(n,k)=if(k==n,1,binomial(2*n-k,n)*(n*(3*k+1)-2*k*(k+1))/((2*n-k)*(2*n-k-1)))

Formula

T(n, k) = binomial(2*n-k, n) * (n*(3*k+1) - 2*k*(k+1)) / ((2*n-k) * (2*n-k-1)) if 0 <= k < n and 1 if k = n.
T(n, k) = T(n, k-1) - T(n-1, k-2) for 2 <= k <= n.
(-1)^(n-k) * T(n, k) is matrix inverse of A004070 (seen as a triangle).
Conjecture: Sum_{i=0..n-k} binomial(i+m-1, i) * T(n, i+k) = T(n+m, m+k) for m > 0.
Conjecture: Sum_{k=0..n} (1 + floor(k/2)) * T(n, k) = A000108(n+1).
G.f.: A(x, y) = (1 + x*C(x)) / (1 - y * x*C(x)), where C(x) is g.f. of A000108.