A378145 Riordan triangle (1 + x * C(x), x * C(x)), where C(x) is g.f. of A000108.
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 5, 10, 8, 4, 1, 14, 28, 23, 13, 5, 1, 42, 84, 70, 42, 19, 6, 1, 132, 264, 222, 138, 68, 26, 7, 1, 429, 858, 726, 462, 240, 102, 34, 8, 1, 1430, 2860, 2431, 1573, 847, 385, 145, 43, 9, 1, 4862, 9724, 8294, 5434, 3003, 1430, 583, 198, 53, 10, 1
Offset: 0
Examples
Triangle T(n, k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 8 9 ====================================================== 0 : 1 1 : 1 1 2 : 1 2 1 3 : 2 4 3 1 4 : 5 10 8 4 1 5 : 14 28 23 13 5 1 6 : 42 84 70 42 19 6 1 7 : 132 264 222 138 68 26 7 1 8 : 429 858 726 462 240 102 34 8 1 9 : 1430 2860 2431 1573 847 385 145 43 9 1 etc.
Crossrefs
Programs
-
PARI
T(n,k)=if(k==n,1,binomial(2*n-k,n)*(n*(3*k+1)-2*k*(k+1))/((2*n-k)*(2*n-k-1)))
Formula
T(n, k) = binomial(2*n-k, n) * (n*(3*k+1) - 2*k*(k+1)) / ((2*n-k) * (2*n-k-1)) if 0 <= k < n and 1 if k = n.
T(n, k) = T(n, k-1) - T(n-1, k-2) for 2 <= k <= n.
(-1)^(n-k) * T(n, k) is matrix inverse of A004070 (seen as a triangle).
Conjecture: Sum_{i=0..n-k} binomial(i+m-1, i) * T(n, i+k) = T(n+m, m+k) for m > 0.
Conjecture: Sum_{k=0..n} (1 + floor(k/2)) * T(n, k) = A000108(n+1).
G.f.: A(x, y) = (1 + x*C(x)) / (1 - y * x*C(x)), where C(x) is g.f. of A000108.