cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378146 Primes p such that 16*p^4 + 1 is prime.

Original entry on oeis.org

2, 3, 17, 23, 37, 41, 53, 59, 71, 97, 127, 139, 167, 233, 263, 277, 283, 379, 389, 457, 521, 563, 571, 601, 619, 661, 691, 743, 797, 809, 811, 823, 853, 859, 877, 967, 971, 997, 1051, 1063, 1103, 1187, 1277, 1289, 1321, 1367, 1399, 1433, 1451, 1499
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 17 2024

Keywords

Crossrefs

Primes p such that (2*p)^(2^k) + 1 is prime: A005384 (k = 0), A052291 (k = 1), this sequence (k = 2).

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | IsPrime(16*p^4+1)];
    
  • Mathematica
    Select[Prime[Range[250]], PrimeQ[16*#^4 + 1] &] (* Amiram Eldar, Nov 17 2024 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(16*p^4+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Nov 17 2024

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Nov 17 2024