cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378160 The number of distinct prime factors of !n = A000166(n).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 2, 4, 3, 3, 4, 3, 3, 4, 5, 5, 4, 7, 5, 6, 4, 5, 7, 6, 6, 7, 4, 4, 4, 8, 4, 6, 4, 5, 6, 6, 4, 7, 2, 4, 7, 8, 6, 5, 7, 6, 7, 7, 4, 6, 9, 6, 6, 6, 6, 6, 4, 4, 5, 4, 3, 6, 6, 6, 6, 6, 7, 7, 4, 8, 6, 5, 8, 6, 4, 4, 5, 8, 4, 7, 7, 8, 6
Offset: 2

Views

Author

Amiram Eldar, Nov 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Array[PrimeNu[Subfactorial[#]] &, 40, 2]
  • PARI
    lista(nmax) = {my(s = 0); for(n = 2, nmax, s = n * s + (-1)^n; print1(omega(s), ", "));}

Formula

a(n) = A001221(A000166(n)).
a(n) >= A001221(n-1) + 1 for n >=5.

Extensions

a(82)-a(88) from Jinyuan Wang, Nov 24 2024

A378161 The number of prime factors of !n = A000166(n), counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 3, 6, 5, 3, 3, 6, 3, 3, 5, 6, 3, 8, 5, 6, 5, 8, 5, 9, 5, 5, 11, 7, 6, 9, 4, 8, 6, 8, 4, 10, 5, 5, 7, 8, 4, 8, 2, 7, 12, 8, 6, 9, 8, 7, 8, 8, 4, 10, 10, 8, 7, 6, 6, 8, 4, 4, 8, 9, 3, 8, 6, 7, 7, 6, 7, 13, 4, 8, 8, 6, 9, 7, 4, 7, 10, 8, 4, 9, 7
Offset: 2

Views

Author

Amiram Eldar, Nov 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Array[PrimeOmega[Subfactorial[#]] &, 40, 2]
  • PARI
    lista(nmax) = {my(s = 0); for(n = 2, nmax, s = n * s + (-1)^n; print1(bigomega(s), ", "));}

Formula

a(n) = A001222(A000166(n)).
a(n) >= A001222(n-1) + 1 for n >=4, with equality if and only if n is in A301423.

Extensions

a(82)-a(86) from Jinyuan Wang, Nov 24 2024

A378158 Numbers k such that lpf(!k) < lpf(k-1), where lpf(k) = A020639(k) and !k = A000166(k).

Original entry on oeis.org

20, 38, 42, 60, 90, 104, 108, 110, 114, 132, 138, 152, 164, 170, 174, 192, 194, 198, 240, 242, 258, 284, 294, 324, 338, 350, 360, 368, 390, 398, 434, 438, 450, 462, 482, 488, 500, 504, 510, 522, 524, 528, 542, 548, 564, 570, 588, 600, 602, 614, 618, 632, 642, 644, 648
Offset: 1

Views

Author

Amiram Eldar, Nov 18 2024

Keywords

Comments

Since (k-1) | !k, we have lpf(!k) <= lpf(k-1). This sequence gives the values of k for which the inequality holds.

Crossrefs

Programs

  • Mathematica
    okQ[k_, p_] := Module[{q = 2}, While[q < p && !Divisible[k, q], q = NextPrime[q]]; q < p]; q[k_] := okQ[Subfactorial[k], FactorInteger[k-1][[1, 1]]]; Select[Range[3, 650], q]
  • PARI
    ok(k, p) = {my(q = 2); while(q < p && k % q, q = nextprime(q+1)); q < p;}
    lista(kmax) = {my(s = 1); for(k = 3, kmax, s = k * s + (-1)^k; if(ok(s, factor(k-1)[1,1]), print1(k, ", ")));}

A378159 The least prime dividing A000255(n); a(1) = 1.

Original entry on oeis.org

1, 3, 11, 53, 3, 13, 11, 3, 1468457, 11, 3, 1373, 34361893981, 3, 17713, 2130617, 3, 11, 13, 3, 11, 617, 3, 37, 11, 3, 179, 14633, 3, 76463, 97, 3, 337, 1049, 3, 11, 7237598635049, 3, 67, 11, 3, 22742406079421034331584846001936724930824184898296683, 11, 3, 13
Offset: 1

Views

Author

Amiram Eldar, Nov 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1, 1]] & /@ Table[Subfactorial[n + 2]/(n + 1), {n, 1, 44}]
  • PARI
    lpf(n) = if(n == 1, 1, factor(n)[1,1]);
    lista(nmax) = {my(s = 1); for(n = 1, nmax, s = (n * (n+2) * s + (-1)^n)/(n+1); print1(lpf(s), ", "));}

Formula

a(n) = A020639(A000255(n)).
a(n) = A000255(n) if and only if n+2 is a term of A301423.
a(3*n-1) = 3.
Showing 1-4 of 4 results.