cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378163 Triangle read by rows: T(n,k) is the number of subgroups of S_n isomorphic to S_k, where S_n is the n-th symmetric group.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 160, 60, 12, 1, 1, 231, 910, 560, 84, 7, 1, 1, 763, 5936, 5740, 560, 56, 8, 1, 1, 2619, 53424, 58716, 3276, 336, 72, 9, 1, 1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1, 1, 35695, 3304620, 8337120, 1105104, 39732, 3300, 660, 110, 11, 1, 1, 140151, 35023120, 133212420, 16571808, 1400784, 20592, 4950, 880, 132, 12, 1, 1, 568503, 322852816, 1769490580, 176344740, 16253952, 130416, 33462, 7150, 1144, 156, 13, 1
Offset: 1

Views

Author

Jianing Song, Nov 18 2024

Keywords

Comments

The number of monomorphisms (i.e., injective homomorphisms) S_k -> S_n is thus |Aut(S_k)|*T(n,k). Note that |Aut(S_k)| = 1 for k = 2, 1440 for k = 6 and k! otherwise.
T(n,k) is related to the number of homomorphisms S_k -> S_n:
k | trivial kernel | kernel S_k (k>=2) | kernel A_k (k>=3) | kernel V (k=4) | total number
-----------+----------------+-------------------+-------------------+----------------+-------------------------
1 | 1 | - | - | - | 1
-----------+----------------+-------------------+-------------------+----------------+-------------------------
2 | b(n)-1 | 1 | - | - | b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
4 | 24*T(n,4) | 1 | b(n)-1 | 6*T(n,3) | 24*T(n,4)+6*T(n,3)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
6 | 1440*T(n,6) | 1 | b(n)-1 | - | 1440*T(n,6)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
3, 5, >=7 | k!*T(n,k) | 1 | b(n)-1 | - | k!*T(n,k)+b(n)
Here A_n is the n-th alternating group, V = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is the Klein-four group in S_4, b = A000085, and T(n,k) = 0 for k > n.
In particular, the number of homomorphisms S_n -> S_n is 1 for n = 1, 2 for n = 2, 58 for n = 4, 1440 + b(6) = 1516 for n = 6, and n! + b(n) otherwise.

Examples

			Table reads
  1
  1, 1
  1, 3, 1
  1, 9, 4, 1
  1, 25, 20, 5, 1
  1, 75, 160, 60, 12, 1
  1, 231, 910, 560, 84, 7, 1
  1, 763, 5936, 5740, 560, 56, 8, 1
  1, 2619, 53424, 58716, 3276, 336, 72, 9, 1
  1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1
		

Crossrefs

Programs

  • GAP
    A378163 := function(n,k)
    local S;
    S := SymmetricGroup(n);
    return Sum(IsomorphicSubgroups(S,SymmetricGroup(k)),x->Index(S,Normalizer(S,Image(x))));
    end; # program given in the Math Stack Exchange link
    
  • GAP
    A378163_row_n := function(n)
    local L, C, G, N, k;
    N := ListWithIdenticalEntries( n, 0 );
    L := ConjugacyClassesSubgroups( SymmetricGroup(n) );
    for C in L do
    G := Representative(C);
    for k in [1..n] do
    if not IsomorphismGroups( G, SymmetricGroup(k) ) = fail then
    N[k] := N[k]+Size(C);
    fi;
    od;
    od;
    return N;
    end;

Formula

T(n,2) = A001189(n).