A378163 Triangle read by rows: T(n,k) is the number of subgroups of S_n isomorphic to S_k, where S_n is the n-th symmetric group.
1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 160, 60, 12, 1, 1, 231, 910, 560, 84, 7, 1, 1, 763, 5936, 5740, 560, 56, 8, 1, 1, 2619, 53424, 58716, 3276, 336, 72, 9, 1, 1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1, 1, 35695, 3304620, 8337120, 1105104, 39732, 3300, 660, 110, 11, 1, 1, 140151, 35023120, 133212420, 16571808, 1400784, 20592, 4950, 880, 132, 12, 1, 1, 568503, 322852816, 1769490580, 176344740, 16253952, 130416, 33462, 7150, 1144, 156, 13, 1
Offset: 1
Examples
Table reads 1 1, 1 1, 3, 1 1, 9, 4, 1 1, 25, 20, 5, 1 1, 75, 160, 60, 12, 1 1, 231, 910, 560, 84, 7, 1 1, 763, 5936, 5740, 560, 56, 8, 1 1, 2619, 53424, 58716, 3276, 336, 72, 9, 1 1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1
Links
- Mathematics Stack Exchange, Subgroups in GAP
Programs
-
GAP
A378163 := function(n,k) local S; S := SymmetricGroup(n); return Sum(IsomorphicSubgroups(S,SymmetricGroup(k)),x->Index(S,Normalizer(S,Image(x)))); end; # program given in the Math Stack Exchange link
-
GAP
A378163_row_n := function(n) local L, C, G, N, k; N := ListWithIdenticalEntries( n, 0 ); L := ConjugacyClassesSubgroups( SymmetricGroup(n) ); for C in L do G := Representative(C); for k in [1..n] do if not IsomorphismGroups( G, SymmetricGroup(k) ) = fail then N[k] := N[k]+Size(C); fi; od; od; return N; end;
Formula
T(n,2) = A001189(n).
Comments