cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378168 a(n) is the number of squares <= 10^n that are not higher powers, i.e., terms of A076467.

Original entry on oeis.org

2, 6, 24, 87, 292, 959, 3089, 9875, 31410, 99633, 315589, 998889, 3160340, 9996605, 31616816, 99989509, 316209268, 999967330, 3162219896, 9999897769, 31622595517, 99999679010, 316227196708, 999998989804, 3162275866962, 9999996815862, 31622770946248, 99999989953079
Offset: 1

Views

Author

Hugo Pfoertner, Nov 20 2024

Keywords

Examples

			a(1) = 2: squares <= 10 are 2^2 and 3^2;
a(2) = 6: 2 squares <= 10 and 5^2, 6^2, 7^2, 10^2, but not 4^2=2^4, 8^2=2^6, and 9^2=3^4;
a(3) = 24: 6 squares <= 100 and all squares between 11^2 and 31^2, except for 16^2=2^8, 25^2=5^4, and 27^2=3^6.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k]*Floor[10^(n/(2k))-1],{k,Floor[Log2[10^n]-1]}],{n,28}] (* James C. McMahon, Nov 21 2024 *)
  • Python
    from math import gcd
    from sympy import integer_nthroot, mobius
    def A378168(n): return sum(mobius(k)*(integer_nthroot(10**(n//(a:=gcd(n,b:=k<<1))), b//a)[0]-1) for k in range(1, (10**n).bit_length()-1)) # Chai Wah Wu, Nov 20 2024

Formula

a(n) = Sum_{k=1..floor(log_2(10^n)-1)} mu(k)*floor(10^(n/(2k))-1). - Chai Wah Wu, Nov 20 2024

Extensions

a(20) onwards from Chai Wah Wu, Nov 20 2024