A205561 Least positive integer k such that n divides (2k)! - (2j)! for some j in [1,k-1].
2, 2, 3, 3, 4, 3, 5, 3, 4, 4, 2, 3, 8, 5, 4, 4, 10, 4, 4, 4, 5, 2, 4, 3, 4, 8, 6, 5, 3, 4, 5, 5, 4, 10, 5, 4, 20, 4, 8, 4, 11, 5, 10, 4, 4, 4, 5, 4, 6, 4, 10, 8, 6, 6, 4, 5, 8, 3, 13, 4, 8, 5, 5, 5, 8, 4, 16, 10, 4, 5, 7, 4, 4, 20, 4, 8, 7, 8, 11, 4, 6, 11, 22, 5, 10, 10, 3, 4, 5, 4, 8, 4
Offset: 1
Keywords
Examples
1 divides (2*2)!-(2*1)! -> k=2, j=1 2 divides (2*2)!-(2*1)! -> k=2, j=1 3 divides (2*3)!-(2*2)! -> k=3, j=2 4 divides (2*3)!-(2*2)! -> k=3, j=2 5 divides (2*4)!-(2*3)! -> k=4, j=3
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local S,j,x; S:= {}: x:= 1: for j from 1 do x:=x*2*j*(2*j-1) mod n; if member(x,S) then return j fi; S:= S union {x} od end proc: map(f, [$1..100]); # Robert Israel, Nov 18 2024
-
Mathematica
s = Table[(2n)!, {n, 1, 120}]; lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}] Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] (* Peter J. C. Moses, Jan 27 2012 *)
Comments