cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A205561 Least positive integer k such that n divides (2k)! - (2j)! for some j in [1,k-1].

Original entry on oeis.org

2, 2, 3, 3, 4, 3, 5, 3, 4, 4, 2, 3, 8, 5, 4, 4, 10, 4, 4, 4, 5, 2, 4, 3, 4, 8, 6, 5, 3, 4, 5, 5, 4, 10, 5, 4, 20, 4, 8, 4, 11, 5, 10, 4, 4, 4, 5, 4, 6, 4, 10, 8, 6, 6, 4, 5, 8, 3, 13, 4, 8, 5, 5, 5, 8, 4, 16, 10, 4, 5, 7, 4, 4, 20, 4, 8, 7, 8, 11, 4, 6, 11, 22, 5, 10, 10, 3, 4, 5, 4, 8, 4
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2012

Keywords

Comments

For a guide to related sequences, see A204892.
From Robert Israel, Nov 20 2024: (Start)
a(n) <= ceil(A002034(n)/2) + 1.
The last occurrence of k >= 2 in the sequence is a((2*k)! - 2) = k. (End)

Examples

			1 divides (2*2)!-(2*1)! -> k=2, j=1
2 divides (2*2)!-(2*1)! -> k=2, j=1
3 divides (2*3)!-(2*2)! -> k=3, j=2
4 divides (2*3)!-(2*2)! -> k=3, j=2
5 divides (2*4)!-(2*3)! -> k=4, j=3
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local S,j,x;
      S:= {}:
      x:= 1:
      for j from 1 do
        x:=x*2*j*(2*j-1) mod n;
        if member(x,S) then return j fi;
        S:= S union {x}
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 18 2024
  • Mathematica
    s = Table[(2n)!, {n, 1, 120}];
    lk = Table[NestWhile[# + 1 &, 1,
       Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1,
      Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &],
    {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)

A378189 Positions of records in A205561.

Original entry on oeis.org

1, 3, 5, 7, 13, 17, 37, 83, 137, 173, 193, 269, 311, 479, 607, 673, 1019, 1427, 1523, 1613, 3391, 3527, 4817, 5021, 5623, 9887, 14891, 15823, 21701, 22727, 24439, 26399, 27581, 28771, 29339, 35491, 37967, 49207, 51157, 52639, 54799, 64303, 93077, 104323, 115279, 116981, 117881, 135209, 157177
Offset: 1

Views

Author

Robert Israel, Nov 19 2024

Keywords

Comments

Numbers m such that there is k such that for every m' < m, there exist j and k' such that 1 <= j < k' <= k and m' divides (2*k')! - (2*j)!, but there do not exist j and k' such that 1 <= j < k' <= k and m divides (2*k')! - (2*j)!.

Crossrefs

Programs

  • Maple
    f:= proc(n) local S, j, x;
      S:= {}:
      x:= 1:
      for j from 1 do
        x:=x*2*j*(2*j-1) mod n;
        if member(x, S) then return j fi;
        S:= S union {x}
      od
    end proc:
    J:= 1: m:= 2: count:= 1:
    for k from 2 while count < 70 do
      v:= f(k);
      if v > m then J:= J, k; count:= count+1; m:= v;
      fi
    od:
    J;
Showing 1-2 of 2 results.