cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378197 Number of 2-colorings of length n without an arithmetic progression of length 5.

Original entry on oeis.org

1, 2, 4, 8, 16, 30, 58, 112, 216, 400, 740, 1398, 2638, 4710, 8444, 15118, 27690, 48406, 84382, 146928, 255844, 402998, 625824, 956370, 1447476, 2066828, 3225856, 5020232, 7823236, 10975318, 15264202, 21500308, 30004914, 39030820, 50728472, 65402746, 88886116
Offset: 0

Views

Author

Ethan Ji, Nov 19 2024

Keywords

Comments

After a(178) = 0, the sequence will continue to be 0. A sequence satisfying this property cannot have a subsequence which violates it, thus there must exist a sequence of length n-1 if there exists a sequence of length n.

Crossrefs

First 0 index given by A005346.

Programs

  • Mathematica
    HasEquallySpacedKBits[bits_, k_] :=
     If[k == 1, True,
      Module[{n = Length[bits], found = False},
       Do[If[Count[Table[bits[[start + gap*i]], {i, 0, k - 1}],
           bits[[start]]] == k, found = True; Break[]], {gap, 1,
         Floor[n/(k - 1)]}, {start, 1, n - gap*(k - 1)}];
       found]]
    BitSequence[k_] :=
     Module[{prevSequences = {{}}, currSequences, n = 0, ExtendSequence},
      ExtendSequence[seq_] :=
       Module[{newSeq0, newSeq1, result = {}}, newSeq0 = Join[seq, {0}];
        newSeq1 = Join[seq, {1}];
        If[! HasEquallySpacedKBits[newSeq0, k], AppendTo[result, newSeq0]];
        If[! HasEquallySpacedKBits[newSeq1, k], AppendTo[result, newSeq1]];
        result];
      Function[targetN,
       Print["k=", k, ", n=", n, ": count=", Length[prevSequences]];
       While[n < targetN, n++;
        currSequences = Flatten[ExtendSequence /@ prevSequences, 1];
        prevSequences = currSequences;
        Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; ]; ]]
    BitSequence[5][178]
    (* Ethan Ji, Nov 19 2024 *)