A378214 Dirichlet inverse of A369255, where A369255(n) = A140773(n) mod 2.
1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, -1, 0, 2, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, -1, 0, 2, -1, -1, -1, 0, 0, 2, -1, 0, -1, -1, -1, 1, 0, 0, 0, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
PARI
A065043(n) = (1 - (bigomega(n)%2)); A038548(n) = sumdiv(n,d,A065043(d)); A140773(n) = sumdiv(n,d,A038548(d)); A369255(n) = (A140773(n)%2); memoA378214 = Map(); A378214(n) = if(1==n,1,my(v); if(mapisdefined(memoA378214,n,&v), v, v = -sumdiv(n,d,if(d
A369255(n/d)*A378214(d),0)); mapput(memoA378214,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA369255(n/d) * a(d).