cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378223 Inverse Möbius transform of A345182.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 2, 4, 4, 4, 2, 10, 2, 4, 6, 8, 2, 12, 2, 10, 6, 4, 2, 24, 4, 4, 8, 10, 2, 20, 2, 16, 6, 4, 6, 36, 2, 4, 6, 24, 2, 20, 2, 10, 16, 4, 2, 56, 4, 12, 6, 10, 2, 32, 6, 24, 6, 4, 2, 62, 2, 4, 16, 32, 6, 20, 2, 10, 6, 20, 2, 100, 2, 4, 16, 10, 6, 20, 2, 56, 16, 4, 2, 62, 6, 4, 6, 24, 2, 72, 6, 10, 6, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2024

Keywords

Comments

Apparently the Dirichlet convolution of A002131 and A323910. - Antti Karttunen, Nov 30 2024

Crossrefs

Cf. A002131, A323910, A345182, A378224 (Dirichlet inverse).
Cf. also A067824.
Odd bisection is not equal to A278223.

Programs

  • PARI
    memoA345182 = Map();
    A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(dA345182(d),0)); mapput(memoA345182,n,v); (v)));
    A378223(n) = sumdiv(n,d,A345182(d));
    
  • PARI
    up_to = 20000;
    A378223list(up_to_n) = { my(v=vector(up_to_n)); v[1] = 1; v[2] = 0; for(n=3,up_to_n,v[n] = 1+sumdiv(n,d,(dA378223list(up_to);
    A378223(n) = v378223[n];

Formula

a(n) = Sum_{d|n} A345182(d).
For n > 2, a(n) = 2*A345182(n).