A378229 Dirichlet inverse of A341529, where A341529(n) = sigma(n) * A003961(n), and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
1, -9, -20, 18, -42, 180, -88, 0, 75, 378, -156, -360, -238, 792, 840, 0, -342, -675, -460, -756, 1760, 1404, -696, 0, 245, 2142, 0, -1584, -930, -7560, -1184, 0, 3120, 3078, 3696, 1350, -1558, 4140, 4760, 0, -1806, -15840, -2068, -2808, -3150, 6264, -2544, 0, 847, -2205, 6840, -4284, -3186, 0, 6552, 0, 9200, 8370
Offset: 1
Links
Programs
-
PARI
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 A341529(n) = (sigma(n)*A003961(n)); memoA378229 = Map(); A378229(n) = if(1==n,1,my(v); if(mapisdefined(memoA378229,n,&v), v, v = -sumdiv(n,d,if(d
A341529(n/d)*A378229(d),0)); mapput(memoA378229,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA341529(n/d) * a(d).
Comments