A378261 G.f. satisfies A(x) = A(x^2)*M(x)/x, where M(x) = Sum_{n>=1} mu(n)*x^n and mu(n) = A008683(n), the Moebius function of n.
1, -1, -2, 1, -2, 3, 3, -2, 0, 1, 5, -3, 1, -6, -2, 5, -5, -1, -1, 1, 10, -3, -18, 4, 0, 6, -2, 2, -7, 3, 10, -8, 3, 13, 3, -4, -5, -1, 16, -7, 1, -21, -21, 13, 11, 32, -3, -18, 14, -12, 27, -5, -29, -14, 40, 18, -9, -7, -28, -9, 28, -12, -1, 21, -18, -17, 21, -4, 2, -26, -55, 15, 6, 57, 76, 4, -63, -35, -31, 12, 27
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 - x - 2*x^2 + x^3 - 2*x^4 + 3*x^5 + 3*x^6 - 2*x^7 + x^9 + 5*x^10 - 3*x^11 + x^12 - 6*x^13 - 2*x^14 + 5*x^15 - 5*x^16 - x^17 - x^18 + x^19 + 10*x^20 - 3*x^21 - 18*x^22 + 4*x^23 + 6*x^25 + ... where A(x) = A(x^2)*M(x)/x, with M(x) starting as M(x) = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 - x^17 - x^19 + x^21 + x^22 - x^23 + x^26 - x^29 - x^30 + ... + mu(n)*x^n + ... so that x = M(x) + M(x^2) + M(x^3) + M(x^4) + ... + M(x^n) + ... Thus, because M(x) = x*A(x)/A(x^2), we have x = x*A(x)/A(x^2) + x^2*A(x^2)/A(x^4) + x^3*A(x^3)/A(x^6) + x^4*A(x^4)/A(x^8) + x^5*A(x^5)/A(x^10) + ... + x^n*A(x^n)/A(x^(2*n)) + ... SPECIFIC VALUES. A(z) = 0 at z = 0.58029462380732672306477623722678043664946494150129261513733196007593... at which M(z) = 0; also, A(+/-sqrt(z)) = 0 where sqrt(z) = 0.76177071603424525645824609227751503049205504631631398431010255922079... A(t) = 1 at t = -0.36788404155611343004262030413356489215751069093739780571442285347... and at t = 0. A(t) = 3/4 at t = 0.1857761904825755826296582919924203148981077141603702423677032... and at t = -0.490458121286701964509344440548675674917868267307919314675917... A(t) = 2/3 at t = 0.2335393155019759242193743786104849997659161888659795344146053... and at t = -0.519733956808611007765606585829046829235954761454838631891973... A(t) = 1/2 at t = 0.3198405467887820951152560564404574186606511299096542831871690... and at t = -0.571809669500110081208798541641929396382408973747748977426161... A(t) = 1/3 at t = 0.3999205691655568373317765145229363880031158016542362401450436... and at t = -0.620228052536454037811510479582708461188023489655490588138156... A(t) = 1/4 at t = 0.4397125538469644065749981128335829295493172812091133616367549... and at t = -0.644814296439482673338297235928747677433880338824104561837150... A(2/3) = -0.061742613282000323935088569460595490025354693881260621358878068... A(1/2) = 0.1298319421606939473389436822721728169327823265614184406479845097... A(1/3) = 0.4724530047506755119306074032801526676340305286513455974985300628... A(1/4) = 0.6363603730534968288384199665118751095126750453913421545923659477... A(1/9) = 0.8653204774591832015787933929093873031717584973772619782252127819... A(1/16) = 0.929904155452109003231349129681442625998610476992091204616469757...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..8200
Programs
-
PARI
{a(n) = my(A=1-x, M = sum(m=1,n+1,moebius(m)*x^m) +x^2*O(x^n)); for(i=1,#binary(n)+1, A = subst(A,x,x^2)*M/x ); polcoef(A,n)} for(n=0,80, print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = A(x^2)*M(x)/x, where M(x) = Sum_{n>=1} mu(n)*x^n.
(2) x = Sum_{n>=1} x^n * A(x^n)/A(x^(2*n)).
Comments