cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378326 a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(n*k,k) / ((n-1)*k+1).

Original entry on oeis.org

1, 1, 3, 19, 219, 3901, 95838, 3022909, 116798643, 5350403737, 283728025998, 17104314563843, 1155635807408096, 86513627563199279, 7109252862969177287, 636268582522962837475, 61610670571434193189443, 6418044336586421956746033, 715718717341021991299583730
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-1, k-1]*Binomial[n*k, k]/((n-1)*k+1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(n + exp(-1) - 1/2) * n^(n - 5/2) / sqrt(2*Pi).

A377098 G.f. A(x) = Sum_{n>=0} a(n)*x^n where a(n) = Sum_{k=0..n-1} [x^k] A(x)^(k*(n-k)) for n >= 1 with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 8, 55, 525, 6202, 85842, 1350421, 23687392, 457238998, 9620344475, 219011293036, 5363006495793, 140567134618434, 3927060955253388, 116510112059820553, 3658928109471912657, 121273249515650581850, 4231012832296844451474, 155003839703746214942229, 5949765253601511005012122
Offset: 0

Views

Author

Paul D. Hanna, Nov 10 2024

Keywords

Comments

Compare to C(x) = Sum_{n>=0} c(n)*x^n where c(n) = Sum_{k=0..n-1} [x^k] C(x)^(n-k) for n >= 1 with c(0) = 1, holds when C(x) is the g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 55*x^4 + 525*x^5 + 6202*x^6 + 85842*x^7 + 1350421*x^8 + 23687392*x^9 + 457238998*x^10 + 9620344475*x^11 + 219011293036*x^12 + ...
By definition, a(n) equals the sum of the coefficients of x^k in A(x)^(k*(n-k)), k = 0..n-1, for n >= 1, as illustrated below.
a(1) = [x^0] A(x)^0;
a(2) = 1 + [x^1] A(x)^1;
a(3) = 1 + [x^1] A(x)^2 + [x^2] A(x)^2;
a(4) = 1 + [x^1] A(x)^3 + [x^2] A(x)^4 + [x^3] A(x)^3;
a(5) = 1 + [x^1] A(x)^4 + [x^2] A(x)^6 + [x^3] A(x)^6 + [x^4] A(x)^4;
a(6) = 1 + [x^1] A(x)^5 + [x^2] A(x)^8 + [x^3] A(x)^9 + [x^4] A(x)^8 + [x^5] A(x)^5;
a(7) = 1 + [x^1] A(x)^6 + [x^2] A(x)^10 + [x^3] A(x)^12 + [x^4] A(x)^12 + [x^5] A(x)^10 + [x^6] A(x)^6;
a(8) = 1 + [x^1] A(x)^7 + [x^2] A(x)^12 + [x^3] A(x)^15 + [x^4] A(x)^16 + [x^5] A(x)^15 + [x^6] A(x)^12 + [x^7] A(x)^7;
...
Explicitly,
a(1) = 1 = 1;
a(2) = 1 + 1 = 2;
a(3) = 1 + 2 + 5 = 8;
a(4) = 1 + 3 + 14 + 37 = 55;
a(5) = 1 + 4 + 27 + 128 + 365 = 525;
a(6) = 1 + 5 + 44 + 300 + 1406 + 4446 = 6202;
a(7) = 1 + 6 + 65 + 580 + 3795 + 17892 + 63503 = 85842;
a(8) = 1 + 7 + 90 + 995 + 8460 + 53088 + 258212 + 1029568 = 1350421;
...
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins as follows.
  n\k   0   1    2     3     4      5       6        7
A^1  = [1,  1,   2,    8,   55,   525,   6202,   85842, ...];
A^2  = [1,  2,   5,   20,  130,  1192,  13738,  187068, ...];
A^3  = [1,  3,   9,   37,  231,  2037,  22877,  306201, ...];
A^4  = [1,  4,  14,   60,  365,  3104,  33944,  446208, ...];
A^5  = [1,  5,  20,   90,  540,  4446,  47330,  610580, ...];
A^6  = [1,  6,  27,  128,  765,  6126,  63503,  803424, ...];
A^7  = [1,  7,  35,  175, 1050,  8218,  83020, 1029568, ...];
A^8  = [1,  8,  44,  232, 1406, 10808, 106540, ...];
A^9  = [1,  9,  54,  300, 1845, 13995, 134838, ...];
A^10 = [1, 10,  65,  380, 2380, 17892, 168820, ...];
A^11 = [1, 11,  77,  473, 3025, 22627, 209539, ...];
A^12 = [1, 12,  90,  580, 3795, 28344, 258212, ...];
A^13 = [1, 13, 104,  702, 4706, 35204, 316238, ...];
A^14 = [1, 14, 119,  840, 5775, 43386, 385217, ...];
A^15 = [1, 15, 135,  995, 7020, 53088, 466970, ...];
A^16 = [1, 16, 152, 1168, 8460, 64528, 563560, ...];
...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(m=1,n, A=concat(A,0);
    A[#A] = 1 + sum(k=1,m-1,(polcoeff(Ser(A)^(k*(m-k)),k)) )); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) a(n) = Sum_{k=0..n-1} [x^k] A(x)^(k*(n-k)) for n >= 1, with a(0) = 1.
(2) A(x) = 1 + x*Sum_{n>=0} x^n/n! * ( d^n/dy^n A(y)^n/(1 - x*A(y)^n) ) evaluated at y = 0.
a(n) ~ c * n! * n^alpha / LambertW(1)^n, where alpha = 0.68670155428... and c = 0.09981115968806..., conjecture: alpha = 2*LambertW(1) - 3 + 4/(1 + LambertW(1)) = 0.6867015542800108601...- Vaclav Kotesovec, Nov 23 2024
Showing 1-2 of 2 results.