A378340 Triangle read by rows: T(n,k) is the number of n node connected achiral planar maps with an external face and k triangular internal faces, n >= 3, 1 <= k <= 2*n - 5.
1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 3, 3, 4, 3, 0, 0, 2, 4, 7, 8, 7, 10, 8, 0, 0, 0, 4, 8, 15, 19, 22, 19, 29, 23, 0, 0, 0, 3, 11, 22, 32, 48, 57, 65, 57, 86, 68, 0, 0, 0, 0, 8, 25, 47, 82, 104, 150, 175, 200, 176, 266, 215, 0, 0, 0, 0, 7, 26, 64, 123, 186, 288, 346, 488, 556, 634, 557, 844, 680
Offset: 3
Examples
Triangle begins: n\k | 1 2 3 4 5 6 7 8 9 10 11 12 13 ----+------------------------------------------------ 3 | 1; 4 | 0, 1, 1; 5 | 0, 1, 1, 2, 1; 6 | 0, 0, 2, 3, 3, 4, 3; 7 | 0, 0, 2, 4, 7, 8, 7, 10, 8; 8 | 0, 0, 0, 4, 8, 15, 19, 22, 19, 29, 23; 9 | 0, 0, 0, 3, 11, 22, 32, 48, 57, 65, 57, 86, 68; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..2306 (rows 3..50)
- Andrew Howroyd, PARI Program, Nov 2024.
Crossrefs
Programs
-
PARI
my(A=A378340rows(10)); for(i=1, #A, print(A[i])) \\ See Links for program.
Formula
T(n,2*n-5) = A002712(n-3). - Ya-Ping Lu, Dec 16 2024
Comments