cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378405 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(n+k,n-2*k).

Original entry on oeis.org

1, 1, 3, 13, 47, 171, 651, 2507, 9703, 37831, 148393, 584673, 2312267, 9174179, 36500257, 145566333, 581746503, 2329206823, 9341025429, 37516150599, 150874376997, 607479424817, 2448608334087, 9879562243961, 39897969991075, 161260133795371
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[n + k, n - 2*k], {k, 0, n/2}], {n, 0, 30}] (* Vaclav Kotesovec, Nov 25 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n, k)*binomial(n+k, n-2*k));

Formula

a(n) = [x^n] (1 + x + x^2 * (1 + x)^2)^n.
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 4.1236218756427610008124277125077732535524468472302771364162049292... is the greatest root of the equation 31 - 256*d + 30*d^2 - 104*d^3 + 27*d^4 = 0 and c = 0.3580097056143148810957018324419771260252367819271313726816... is the positive real root of the equation -31 - 3024*c + 51376*c^2 - 257536*c^3 + 386304*c^4 = 0. - Vaclav Kotesovec, Nov 25 2024