cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378413 Irregular triangle read by rows: T(n,k) is the coefficient of x^k in the domination polynomial of the n-prism graph (n>=1, A004524(n+2)<=k<=2*n).

Original entry on oeis.org

2, 1, 6, 4, 1, 9, 20, 15, 6, 1, 4, 24, 62, 56, 28, 8, 1, 10, 85, 192, 200, 120, 45, 10, 1, 51, 288, 618, 696, 483, 220, 66, 12, 1, 14, 210, 966, 2018, 2408, 1862, 987, 364, 91, 14, 1, 4, 80, 824, 3248, 6646, 8304, 6992, 4176, 1804, 560, 120, 16, 1, 18, 405
Offset: 1

Views

Author

Eric W. Weisstein, Nov 25 2024

Keywords

Comments

Sequence extended to n=1 using the recurrence.
Sum_{k=A004524(n+2)..2*n} T(n,k) = A284702(n).
T(n,2*n) = 1.

Examples

			D(1) = 2*x+x^2
D(2) = 6*x^2+4*x^3+x^4
D(3) = 9*x^2+20*x^3+15*x^4+6*x^5+x^6
D(4) = 4*x^2+24*x^3+62*x^4+56*x^5+28*x^6+8*x^7+x^8
D(5) = 10*x^3+85*x^4+192*x^5+200*x^6+120*x^7+45*x^8+10*x^9+x^10
		

Crossrefs

Cf. A004524 (domination number of the (n-2)-prism graph).
Cf. A284702 (number of dominating sets in the n-prism graph).
Cf. A005843 (vertex count of the n-prism graph = 2*n).

Programs

  • Mathematica
    DeleteCases[#, 0] & /@ CoefficientList[LinearRecurrence[{2 x + x^2, x^2, 3 x^2 + 2 x^3, x^2, x^4, -x^4, -x^4}, {2 x + x^2, 6 x^2 + 4 x^3 + x^4, 9 x^2 + 20 x^3 + 15 x^4 + 6 x^5 + x^6, 4 x^2 + 24 x^3 + 62 x^4 + 56 x^5 + 28 x^6 + 8 x^7 + x^8, 10 x^3 + 85 x^4 + 192 x^5 + 200 x^6 + 120 x^7 + 45 x^8 + 10 x^9 + x^10, 51 x^4 + 288 x^5 + 618 x^6 + 696 x^7 + 483 x^8 + 220 x^9 + 66 x^10 + 12 x^11 + x^12, 14 x^4 + 210 x^5 + 966 x^6 + 2018 x^7 + 2408 x^8 + 1862 x^9 + 987 x^10 + 364 x^11 + 91 x^12 + 14 x^13 + x^14}, 10], x] // Flatten

Formula

D(n) = (2*x+x^2)*D(n-1) + x^2*D(n-2) + (3*x^2+2x^3)*D(n-3) + x^2*D(n-4) + x^4*D(n-5) - x^4*D(n-6) -x^4*D(n-7), where D(n) = sum(T(n,k)*x^k,k).