A378416 Number of fixed site animals with n nodes on the nodes of the rhombille tiling.
3, 6, 21, 73, 273, 1049, 4117, 16416, 66263, 270211, 1111443, 4605575, 19204920, 80515734, 339137432, 1434319849
Offset: 1
References
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
Links
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes. Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clustersA pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk. Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes. Theoretical Computer Science, 307 (2003), 433-453.
Crossrefs
Formula
It is widely believed site animals on 2-dimensional lattices grow asymptotically to kc^n/n, where k is a constant and c is the growth constant, dependent only on the lattice. See the Madras and Slade reference.
Comments