cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378424 Product_{n>=1} (1+x^n)^a(n) = Sum_{k>=0} C(k)*x^k, where C(k) = A000108(k).

Original entry on oeis.org

1, 2, 3, 10, 25, 78, 245, 810, 2700, 9250, 32065, 112710, 400023, 1432858, 5170575, 18784170, 68635477, 252088416, 930138521, 3446167850, 12815663595, 47820447026, 178987624513, 671825132838, 2528212128750, 9536895064398, 36054433807398, 136583761444354, 518401146543811, 1971076361996550, 7506908923471953, 28634752211620266
Offset: 1

Views

Author

Thomas Scheuerle, Nov 26 2024

Keywords

Comments

Conjecture: A327937(n) divides a(n).

Crossrefs

Programs

  • PARI
    A179277(n) = if(n<=1, 1, sum(k=0,floor(n/2),A179277(k)*binomial(2*n-4*k, n-2*k)/(n-2*k+1)))
    a(max_n) = {my(va,vb,vc); vc=va=vector(max_n);vb = vector(max_n,k,A179277(k)); for(k=1,max_n,vc[k]=k*vb[k]-sum(m=1,k-1,vc[m]*vb[k-m])); for(k=1,max_n,va[k]=1/k*sumdiv(k,m,moebius(k/m)*vc[m])); va;}

Formula

Inverse Euler transform of A179277.