cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378434 Arithmetic mean between the Dirichlet inverses of {sum of unitary divisors} and {sum of squarefree divisors}.

Original entry on oeis.org

1, -3, -4, 5, -6, 12, -8, -9, 9, 18, -12, -20, -14, 24, 24, 16, -18, -27, -20, -30, 32, 36, -24, 36, 20, 42, -24, -40, -30, -72, -32, -30, 48, 54, 48, 48, -38, 60, 56, 54, -42, -96, -44, -60, -54, 72, -48, -64, 35, -60, 72, -70, -54, 72, 72, 72, 80, 90, -60, 120, -62, 96, -72, 56, 84, -144, -68, -90, 96, -144, -72, -90
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

Arithmetic mean between A158523 and A178450.
Apparently differs from A378433 at positions given by A048111: 16, 32, 36, 48, 64, 72, 80, 81, 96, ...

Crossrefs

Cf. A034448, A048111, A048250, A158523, A178450, A325973, A378433, A378435 (Dirichlet inverse).

Programs

  • PARI
    A158523(n) = { my(f = factor(n)); prod(i = 1, #f~, (-1)^f[i, 2]*(f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)); }; \\ From A158523
    A178450(n) = { my(f=factor(n)); prod(i=1, #f~, if(!(f[i,2]%2), 2*(f[i, 1]^(f[i, 2]/2)), -(1+f[i,1])*(f[i, 1]^((f[i, 2]-1)/2)))); };
    A378434(n) = ((A158523(n)+A178450(n))/2);

Formula

a(n) = (1/2) * (A158523(n)+A178450(n)).

A378435 Dirichlet inverse of the arithmetic mean between the Dirichlet inverses of {sum of unitary divisors} and {sum of squarefree divisors}.

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 9, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 15, 48, 54, 48, 25, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 36, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 24, 84, 144, 68, 72, 96, 144, 72, 33, 74, 114, 64, 80, 96, 168, 80, 54, 34
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

The first negative term is a(2592) = -48.
Apparently differs from A325973 at positions given by A048111: 16, 32, 36, 48, 64, 72, 80, 81, 96, ...

Crossrefs

Dirichlet inverse of A378434.

Programs

  • PARI
    A158523(n) = { my(f = factor(n)); prod(i = 1, #f~, (-1)^f[i, 2]*(f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)); }; \\ From A158523
    A178450(n) = { my(f=factor(n)); prod(i=1, #f~, if(!(f[i,2]%2), 2*(f[i, 1]^(f[i, 2]/2)), -(1+f[i,1])*(f[i, 1]^((f[i, 2]-1)/2)))); };
    A378434(n) = ((A158523(n)+A178450(n))/2);
    memoA378435 = Map();
    A378435(n) = if(1==n,1,my(v); if(mapisdefined(memoA378435,n,&v), v, v = -sumdiv(n,d,if(dA378434(n/d)*A378435(d),0)); mapput(memoA378435,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378434(n/d) * a(d).
Showing 1-2 of 2 results.