cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378451 Dirichlet inverse of A119347, where A119347(n) is the number of distinct sums of distinct divisors of n.

Original entry on oeis.org

1, -3, -3, 2, -3, 6, -3, 0, 2, 3, -3, 5, -3, 3, 3, 0, -3, -6, -3, 9, 3, 3, -3, -12, 2, 3, 0, -5, -3, 18, -3, 0, 3, 3, 3, 13, -3, 3, 3, 3, -3, -6, -3, -12, -4, 3, -3, 4, 2, -12, 3, -12, -3, -6, 3, 57, 3, 3, -3, -15, -3, 3, -8, 0, 3, -54, -3, -12, 3, -34, -3, -39, -3, 3, -12, -12, 3, -78, -3, -24, 0, 3, -3, 157, 3, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2024

Keywords

Crossrefs

Cf. A119347.

Programs

  • PARI
    A119347(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c)-1; };
    memoA378451 = Map();
    A378451(n) = if(1==n,1,my(v); if(mapisdefined(memoA378451,n,&v), v, v = -sumdiv(n,d,if(dA119347(n/d)*A378451(d),0)); mapput(memoA378451,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA119347(n/d) * a(d).