cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378461 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(2*n+2*k-1,n-k).

Original entry on oeis.org

1, 2, 16, 137, 1216, 11057, 102229, 956601, 9032680, 85893860, 821402341, 7891371303, 76105710253, 736364519399, 7144586617597, 69487754788517, 677259385478616, 6613163312601491, 64681617534027028, 633569272646345064, 6214190349161222941, 61023489213944162889
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(2*n+2*k-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x - x/(1 - x)^2)^n.

A378465 Expansion of (1/x) * Series_Reversion( x * (1 - x - x/(1 - x)) ).

Original entry on oeis.org

1, 2, 9, 51, 324, 2206, 15737, 116098, 878495, 6780544, 53175176, 422508607, 3394004192, 27518168434, 224899980185, 1850830170355, 15324273361220, 127562500961502, 1066940307951747, 8962213871074848, 75572666059970392, 639485384767169924, 5428457500063304272
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x/(1-x)))/x)
    
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)*binomial(2*n+k, n-k))/(n+1);

Formula

G.f.: exp( Sum_{k>=1} A378460(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x - x/(1 - x))^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(2*n+k,n-k).
a(n) ~ ((16 + 12*2^(1/3) + 9*2^(2/3))/5)^n / (sqrt(6*(4 - 3*2^(1/3))*Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 27 2024

A367413 Expansion of (1/x) * Series_Reversion( x * (1-x-x^3/(1-x)^2) ).

Original entry on oeis.org

1, 1, 2, 6, 22, 87, 356, 1493, 6398, 27936, 123906, 556734, 2528668, 11590555, 53545932, 249065874, 1165482126, 5482782933, 25914899804, 123009541412, 586121731150, 2802470267460, 13441993044464, 64660400422341, 311861855749484, 1507802756171072, 7306422899878394
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^3/(1-x)^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n,n-3*k).
From Seiichi Manyama, Nov 27 2024: (Start)
G.f.: exp( Sum_{k>=1} A378464(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x - x^3/(1 - x)^2)^(n+1). (End)
Showing 1-3 of 3 results.