A378471 Numbers m whose symmetric representation of sigma(m), SRS(m), has at least 2 parts the first of which has width 1.
3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105
Offset: 1
Keywords
Examples
a(5) = 10 is in the sequence since SRS(10) = {9, 9} consists of 2 parts of width 1 and of sizes 9 = (2^2 - 1)(5+1)/2. a(15) = 25 is in the sequence since the first part of SRS(25) = {13, 5, 13} has width 1 and has size 13 = (2^1 - 1)(25+1)/2. a(28) = 44 is in the sequence since SRS(44) = {42, 42} has width 1 and has size 42 = (2^3 - 1)(11+1)/2. The upper left hand 11 X 11 section of array T(j, k) shows the j-th number m in this sequence of the form m = 2^k * q with q odd. The first part of SRS(m) of every number in column k consists of 2^(k+1) - 1 legs of width 1. j\k| 0 1 2 3 4 5 6 7 8 9 10 ... ------------------------------------------------------------------------ 1 | 3 10 44 136 592 2144 8384 32896 133376 527872 2102272 2 | 5 14 52 152 656 2272 8768 33664 133888 528896 2112512 3 | 7 22 68 184 688 2336 8896 34432 138496 531968 2118656 4 | 9 26 76 232 752 2528 9536 34688 140032 537088 2130944 5 | 11 34 92 248 848 2656 9664 35456 142592 538112 2132992 6 | 13 38 116 296 944 2848 10048 35968 144128 543232 2137088 7 | 15 46 124 328 976 3104 10432 36224 145664 544256 2139136 8 | 17 50 148 344 1072 3232 10688 37504 146176 547328 2149376 9 | 19 58 164 376 1136 3296 11072 39296 147712 556544 2161664 10 | 21 62 172 424 1168 3424 11456 39808 150272 558592 2163712 11 | 23 70 188 472 1264 3488 11584 40064 151808 559616 2180096 ... Row 1 is A246956(n), n>=1. Column 0 is A005408(n) with T(j + 1, 0) = T(j, 0) + 2, n>=1. Column 1 is A091999(n) with T(j + 2, 1) = T(j, 1) + 12, n>=2. Column 2 is A270298(n) with T(j + 48, 2) = T(j, 2) + 840, n>=1. Column 3 is A270301(n) with T(j + 5760, 3) = T(j, 3) + 240240, n>=1.
Crossrefs
Programs
-
Mathematica
(* partsSRS[] and widthPattern[ ] are defined in A377654 *) a378471[m_, n_] := Select[Range[m, n], Length[partsSRS[#]]>1&&widthPattern[#][[1;;2]]=={1, 0}&] a378471[1, 105]
Comments