A378495 Triangle read by rows: T(n,k) is the number of derangements in S_n with no k-cycles. 1 <= k <= n.
0, 0, 0, 0, 2, 0, 0, 6, 9, 3, 0, 24, 24, 44, 20, 0, 160, 225, 175, 265, 145, 0, 1140, 1224, 1434, 1350, 1854, 1134, 0, 8988, 11025, 12313, 12145, 11473, 14833, 9793, 0, 80864, 93456, 100232, 106280, 113336, 107576, 133496, 93176, 0, 809856, 965601, 1057761, 1141425, 1108161, 1162161, 1108161, 1334961, 972081
Offset: 1
Examples
Triangle begins: | 1 2 3 4 5 6 7 8 9 ---+--------------------------------------------------------------- 1 | 0 2 | 0, 0 3 | 0, 2, 0 4 | 0, 6, 9, 3 5 | 0, 24, 24, 44, 20 6 | 0, 160, 225, 175, 265, 145 7 | 0, 1140, 1224, 1434, 1350, 1854, 1134 8 | 0, 8988, 11025, 12313, 12145, 11473, 14833, 9793 9 | 0, 80864, 93456, 100232, 106280, 113336, 107576, 133496, 93176
Formula
T(n,1) = 0.
T(n,k) = Sum_{i=0..n} (-1)^i*binomial(n,i)*A122974(n-i,k) for k > 1.
T(n,2) = A038205(n).
T(n,n-1) = A000166(n) for n >= 3.
T(n,n) = A000166(n) - (n-1)! for n >= 3.
Conjecture: T(n,n-1) - T(n,n-2) = abs(A238474(n-4)) for n >= 4.
Conjecture: T(n,n-2) - T(n,n) = (n-3)!*(n-4)*(n-1)/2 for n >= 5.
Comments