cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378495 Triangle read by rows: T(n,k) is the number of derangements in S_n with no k-cycles. 1 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 6, 9, 3, 0, 24, 24, 44, 20, 0, 160, 225, 175, 265, 145, 0, 1140, 1224, 1434, 1350, 1854, 1134, 0, 8988, 11025, 12313, 12145, 11473, 14833, 9793, 0, 80864, 93456, 100232, 106280, 113336, 107576, 133496, 93176, 0, 809856, 965601, 1057761, 1141425, 1108161, 1162161, 1108161, 1334961, 972081
Offset: 1

Views

Author

Peter Kagey, Nov 29 2024

Keywords

Comments

A derangement is a permutation with no fixed points.
Conjecture: For n >= 3, the GCD of the n-th row is n-1.

Examples

			Triangle begins:
   | 1      2      3       4       5       6       7       8      9
---+---------------------------------------------------------------
 1 | 0
 2 | 0,     0
 3 | 0,     2,     0
 4 | 0,     6,     9,      3
 5 | 0,    24,    24,     44,     20
 6 | 0,   160,   225,    175,    265,    145
 7 | 0,  1140,  1224,   1434,   1350,   1854,   1134
 8 | 0,  8988, 11025,  12313,  12145,  11473,  14833,   9793
 9 | 0, 80864, 93456, 100232, 106280, 113336, 107576, 133496, 93176
		

Crossrefs

Formula

T(n,1) = 0.
T(n,k) = Sum_{i=0..n} (-1)^i*binomial(n,i)*A122974(n-i,k) for k > 1.
T(n,2) = A038205(n).
T(n,n-1) = A000166(n) for n >= 3.
T(n,n) = A000166(n) - (n-1)! for n >= 3.
Conjecture: T(n,n-1) - T(n,n-2) = abs(A238474(n-4)) for n >= 4.
Conjecture: T(n,n-2) - T(n,n) = (n-3)!*(n-4)*(n-1)/2 for n >= 5.