cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378510 The least totient number k with exactly n solutions to the equation phi(x) = k, where all the solutions are nontotient numbers (A007617).

Original entry on oeis.org

30, 116, 42, 456, 780, 1140, 1368, 1380, 3420, 4356, 5104, 20196, 9396, 1980, 15876, 8316, 4860, 16380, 79464, 239976, 15720, 69300, 129960, 70000, 90360, 141680, 263160, 835380, 802296, 706680, 236808, 39960, 205800, 2898840, 3200904, 598920, 664440, 2723400
Offset: 2

Views

Author

Amiram Eldar, Nov 29 2024

Keywords

Comments

The least term k of A378509 such that A014197(k) = n.

Crossrefs

Programs

  • Mathematica
    seq[len_] := Module[{v = Table[0, {len+1}], c = 0, k = 2, s, ns}, While[c < len, s = PhiInverse[k]; ns = Length[s]; If[0 < ns <= len + 1 && AllTrue[s, PhiMultiplicity[#] == 0 &] && v[[ns]] == 0, v[[ns]] = k; c++]; k += 2]; Rest[v]]; seq[10] (* using David M. Bressoud's CNT.m *)
  • PARI
    lista(len) = {my(v = vector(len+1), c = 0, k = 2, s, ns, ans); while(c < len, s = invphi(k); ns = #s; ans = 1; for(i = 1, ns, if(istotient(s[i]), ans = 0; break)); if(ans && ns > 0 && ns <= len + 1 && v[ns] == 0, c++; v[ns] = k); k += 2); vecextract(v,"^1");} \\ using Max Alekseyev's invphi.gp

Formula

a(n) >= A007374(n).