A378510 The least totient number k with exactly n solutions to the equation phi(x) = k, where all the solutions are nontotient numbers (A007617).
30, 116, 42, 456, 780, 1140, 1368, 1380, 3420, 4356, 5104, 20196, 9396, 1980, 15876, 8316, 4860, 16380, 79464, 239976, 15720, 69300, 129960, 70000, 90360, 141680, 263160, 835380, 802296, 706680, 236808, 39960, 205800, 2898840, 3200904, 598920, 664440, 2723400
Offset: 2
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 2..70
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- David M. Bressoud, A Course in Computational Number Theory (web page), CNT.m, Computational Number Theory Mathematica package.
Programs
-
Mathematica
seq[len_] := Module[{v = Table[0, {len+1}], c = 0, k = 2, s, ns}, While[c < len, s = PhiInverse[k]; ns = Length[s]; If[0 < ns <= len + 1 && AllTrue[s, PhiMultiplicity[#] == 0 &] && v[[ns]] == 0, v[[ns]] = k; c++]; k += 2]; Rest[v]]; seq[10] (* using David M. Bressoud's CNT.m *)
-
PARI
lista(len) = {my(v = vector(len+1), c = 0, k = 2, s, ns, ans); while(c < len, s = invphi(k); ns = #s; ans = 1; for(i = 1, ns, if(istotient(s[i]), ans = 0; break)); if(ans && ns > 0 && ns <= len + 1 && v[ns] == 0, c++; v[ns] = k); k += 2); vecextract(v,"^1");} \\ using Max Alekseyev's invphi.gp
Formula
a(n) >= A007374(n).
Comments