A378523 Dirichlet inverse of A332993, where A332993 is defined as a(1) = 1, and for n > 1, a(n) = n + a(A032742(n)), and A032742 is the largest proper divisor.
1, -3, -4, 2, -6, 14, -8, 0, 3, 20, -12, -14, -14, 26, 27, 0, -18, -17, -20, -18, 35, 38, -24, 4, 5, 44, 0, -22, -30, -109, -32, 0, 51, 56, 53, 34, -38, 62, 59, 4, -42, -137, -44, -30, -30, 74, -48, 0, 7, -27, 75, -34, -54, 6, 77, 4, 83, 92, -60, 146, -62, 98, -36, 0, 89, -193, -68, -42, 99, -199, -72, -28, -74, 116
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA332993(n/d) * a(d).