cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378531 Dirichlet convolution of A378432 and A378542.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 0, 2, 2, 3, 0, 4, 0, 3, 3, 6, 0, 4, 0, 4, 3, 3, 0, 14, 2, 3, 2, 4, 0, 6, 0, 10, 3, 3, 3, 18, 0, 3, 3, 14, 0, 6, 0, 4, 4, 3, 0, 30, 2, 4, 3, 4, 0, 14, 3, 14, 3, 3, 0, 30, 0, 3, 4, 22, 3, 6, 0, 4, 3, 6, 0, 48, 0, 3, 4, 4, 3, 6, 0, 30, 6, 3, 0, 30, 3, 3, 3, 14, 0, 30, 3, 4, 3, 3, 3, 74, 0, 4, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378533.

Crossrefs

Cf. A008683, A378532 (Dirichlet inverse), A378432, A378533 (inverse Möbius transform), A378542.
Cf. also A345182.

Programs

Formula

a(n) = Sum_{d|n} A378432(d)*A378542(n/d).
a(n) = Sum_{d|n} A008683(d)*A378533(n/d).

A378534 Dirichlet convolution of A033879 and A378525.

Original entry on oeis.org

1, -1, -1, -2, -1, -2, -1, 0, -2, -2, -1, 1, -1, -2, -2, 0, -1, 1, -1, 1, -2, -2, -1, 2, -2, -2, 0, 1, -1, 2, -1, 0, -2, -2, -2, 4, -1, -2, -2, 2, -1, 2, -1, 1, 1, -2, -1, 0, -2, 1, -2, 1, -1, 2, -2, 2, -2, -2, -1, 6, -1, -2, 1, 0, -2, 2, -1, 1, -2, 2, -1, -1, -1, -2, 1, 1, -2, 2, -1, 0, 0, -2, -1, 6, -2, -2, -2, 2, -1, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378532.

Crossrefs

Cf. A008683, A033879, A323910, A378532 (inverse Möbius transform), A378533 (Dirichlet inverse), A378542.
Cf. also A378224.

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A378525(n/d).
a(n) = Sum_{d|n} A008683(d)*A378532(n/d).
Showing 1-2 of 2 results.