cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378561 Number of ways to place k nonattacking anassas on an n X n chess board. Triangle T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 22, 14, 1, 16, 82, 156, 90, 1, 25, 220, 840, 1366, 738, 1, 36, 485, 3100, 9796, 14288, 7364, 1, 49, 938, 9030, 46816, 129360, 174112, 86608, 1, 64, 1652, 22344, 172116, 767424, 1916776, 2424880, 1173240, 1, 81, 2712, 49056, 525756, 3442740, 13682320, 31572720, 38019496, 17990600
Offset: 0

Views

Author

Eder G. Santos, Nov 30 2024

Keywords

Comments

Anassas (also called semi-rook+semi-bishop) are chess pieces with 2 moves: one horizontal or vertical and one diagonal.

Examples

			Triangle begins:
  1;
  1  1;
  1  4   3;
  1  9  22   14;
  1 16  82  156   90;
  1 25 220  840 1366   738;
  1 36 485 3100 9796 14288 7364;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A000290.
Main diagonal gives A088789(n+1).

Programs

  • SageMath
    print([sum([factorial(j)*binomial(n-k+j,j)*stirling_number2(n,n-k+j)*2^(k-2*j)*(binomial(k-j,j-1)+binomial(k-j+1,j)) for j in [0..ceil(k/2)]]) for n in [0..10] for k in [0..n]])

Formula

T(n,k) = Sum_{j=0..ceiling(k/2)} j! * binomial(n-k+j,j) * Stirling2(n,n-k+j) * 2^(k-2*j) * (binomial(k-j,j-1) + binomial(k-j+1,j)).