A378561 Number of ways to place k nonattacking anassas on an n X n chess board. Triangle T(n,k) read by rows.
1, 1, 1, 1, 4, 3, 1, 9, 22, 14, 1, 16, 82, 156, 90, 1, 25, 220, 840, 1366, 738, 1, 36, 485, 3100, 9796, 14288, 7364, 1, 49, 938, 9030, 46816, 129360, 174112, 86608, 1, 64, 1652, 22344, 172116, 767424, 1916776, 2424880, 1173240, 1, 81, 2712, 49056, 525756, 3442740, 13682320, 31572720, 38019496, 17990600
Offset: 0
Examples
Triangle begins: 1; 1 1; 1 4 3; 1 9 22 14; 1 16 82 156 90; 1 25 220 840 1366 738; 1 36 485 3100 9796 14288 7364; ...
Links
- S. Chaiken, C. R. H. Hanusa, and T. Zaslavsky, A q-Queens Problem. V. Some of Our Favorite Pieces: Queens, Bishops, Rooks, and Nightriders, J. Korean Math. Soc., 57(6): 1407-1433, 2020; see also arXiv preprint, arXiv:1609.00853 [math.CO], 2016-2020.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 716-722.
- Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024.
Programs
-
SageMath
print([sum([factorial(j)*binomial(n-k+j,j)*stirling_number2(n,n-k+j)*2^(k-2*j)*(binomial(k-j,j-1)+binomial(k-j+1,j)) for j in [0..ceil(k/2)]]) for n in [0..10] for k in [0..n]])
Formula
T(n,k) = Sum_{j=0..ceiling(k/2)} j! * binomial(n-k+j,j) * Stirling2(n,n-k+j) * 2^(k-2*j) * (binomial(k-j,j-1) + binomial(k-j+1,j)).
Comments