cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A378577 G.f. A(x) equals the series obtained by removing all factors of 2 from the coefficients in 1 + x*A(x)^2.

Original entry on oeis.org

1, 1, 1, 3, 1, 9, 13, 55, 5, 201, 309, 1467, 541, 7009, 10905, 53103, 2493, 232713, 369973, 1895875, 711901, 10057761, 15917809, 80998215, 7682147, 389278901, 625035439, 3285433779, 1245382467, 18187624005, 29024837139, 150736553103, 7191395811, 735853765941, 1190542570455, 6387028801323, 2429801651419
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2024

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + x^4 + 9*x^5 + 13*x^6 + 55*x^7 + 5*x^8 + 201*x^9 + 309*x^10 + 1467*x^11 + 541*x^12 + 7009*x^13 + 10905*x^14 + 53103*x^15 + 2493*x^16 + ...
The expansion of A(x)^2 begins
A(x)^2 = 1 + 2*x + 3*x^2 + 8*x^3 + 9*x^4 + 26*x^5 + 55*x^6 + 160*x^7 + 201*x^8 + 618*x^9 + 1467*x^10 + 4328*x^11 + 7009*x^12 + 21810*x^13 + 53103*x^14 + 159552*x^15 + ...
where g.f. A(x) is obtained by removing all factors of 2 from the coefficients in 1 + x*A(x)^2.
Notice that the powers of 2 that divide the coefficients in 1 + x*A(x)^2 to give the respective coefficients in A(x) form the period 16 sequence [1, 2, 1, 8, 1, 2, 1, 32, 1, 2, 1, 8, 1, 2, 1, 64], ignoring the initial constant terms.
Given A000265(n) = odd part of n, we may also use the following formula
  a(n) = A000265( Sum_{k=0..n-1} a(k)*a(n-k-1) ) for n > 0
as illustrated by
  a(1) = 1;
  a(2) = A000265(1*1 + 1*1) = 1;
  a(3) = A000265(1*1 + 1*1 + 1*1) = 3;
  a(4) = A000265(1*3 + 1*1 + 1*1 + 3*1) = 1;
  a(5) = A000265(1*1 + 1*3 + 1*1 + 3*1 + 1*1) = 9;
  a(6) = A000265(1*9 + 1*1 + 1*3 + 3*1 + 1*1 + 9*1) = 13;
  a(7) = A000265(1*13 + 1*9 + 1*1 + 3*3 + 1*1 + 9*1 + 13*1) = 55;
  ...
RATIOS OF TERMS.
The ratios a(n+1)/a(n) seem to tend to a period 16 sequence of reals as a limit.
For example, for n = 9968..9983 the values are approximately
[1.648278, 5.66786, 0.386617, 16.11420, 1.628799, 5.52564, 0.096966, 57.3175, 1.645484, 5.64340, 0.3869028, 16.0584, 1.629124, 5.52096, 0.0484979, 112.4854].
And for n = 16370..16385 the 16 values are approximately
[1.648318, 5.66829, 0.386625, 16.11592, 1.628837, 5.52605, 0.096968, 57.3244, 1.645524, 5.64383, 0.3869115, 16.0601, 1.629162, 5.52138, 0.0484989, 112.4990].
What is the limit of each of these 16 values?
SPECIFIC VALUES.
A(t) = 2 at t = 0.36423557025609119319840508971928979325085050158297...
A(t) = 7/4 at t = 0.34185808023756575598995230721363143324449415040840...
A(t) = 5/3 at t = 0.32872963418965851479105080085792251790114332592550...
A(t) = 3/2 at t = 0.29042932434410374379568213857247308991788862102621...
A(t) = 4/3 at t = 0.23035252030969595871280245310990008598072787136152...
A(t) = 5/4 at t = 0.18922043486502922451746312802717681803115006233322...
A(1/3) = 1.6934776520525683546148601762295937105641618330534...
A(1/4) = 1.3803475910136768240697468770816757080230324208973...
A(1/5) = 1.2702054444980255497491030452212140699102670480027...
A(1/6) = 1.2107705896242485243544918479672582628536284699829...
A(1/8) = 1.1470812698447982797390188599870804830531241984640...
		

Crossrefs

Programs

  • PARI
    N = 40; A=vector(N+1);  \\ N = number of terms
    {a(n) = A[n+1] = if(n==0,1, sum(k=0,n-1, A[k+1]*A[n-k]) ); A[n+1] = A[n+1]/2^valuation(A[n+1],2)}
    for(n=0,N, print1(a(n),", "))

Formula

a(n) = A000265( Sum_{k=0..n-1} a(k)*a(n-k-1) ) for n > 0 with a(0) = 1, where A000265(m) = odd part of m.
Showing 1-1 of 1 results.