cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378613 a(n) = Sum_{k=0..n} binomial(4*n+k-1,k) * binomial(n-1,n-k).

Original entry on oeis.org

1, 4, 44, 532, 6748, 88024, 1169444, 15738328, 213842716, 2927097712, 40302226944, 557565134196, 7744326799684, 107925260553088, 1508352084699224, 21132667178858512, 296716493251706652, 4174006026061733232, 58816013334014598032, 830025065117154066064, 11729345524163083673648
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k-1, k)*binomial(n-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x))^(4*n).
a(n) = (1/8)^n * [x^(4*n)] 4/(1 - x/(1 - x))^n for n > 0.

A378612 a(n) = Sum_{k=0..n} binomial(3*n+k-1,k) * binomial(n-1,n-k).

Original entry on oeis.org

1, 3, 27, 264, 2703, 28443, 304740, 3306852, 36225519, 399755001, 4437142467, 49485052224, 554059164036, 6224177431332, 70120015345512, 791898021185484, 8962485528377583, 101626868754849381, 1154295872365035537, 13130360954151723480, 149562006735075309783
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+k-1, k)*binomial(n-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x))^(3*n).
a(n) = (1/4)^n * [x^(3*n)] 3/(1 - x/(1 - x))^n for n > 0.
Showing 1-2 of 2 results.