A378614 Number of composite numbers (A002808) between consecutive perfect powers (A001597), exclusive.
0, 1, 0, 4, 5, 1, 2, 3, 8, 11, 12, 15, 15, 3, 1, 12, 19, 21, 16, 7, 12, 11, 25, 29, 16, 13, 32, 33, 35, 22, 14, 40, 39, 42, 45, 46, 47, 50, 52, 32, 19, 55, 56, 59, 60, 27, 35, 65, 64, 67, 68, 40, 30, 75, 74, 77, 19, 57, 62, 9, 9, 81, 81, 88, 89, 87, 32, 55, 94
Offset: 1
Keywords
Examples
The composite numbers counted by a(n) cover A106543 with the following disjoint sets: . 6 . 10 12 14 15 18 20 21 22 24 26 28 30 33 34 35 38 39 40 42 44 45 46 48 50 51 52 54 55 56 57 58 60 62 63
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..12127 (between consecutive perfect powers k <= 2^27)
Crossrefs
For prime instead of perfect power we have A046933.
For prime instead of composite we have A080769.
For nonprime prime power instead of perfect power we have A378456.
A002808 lists the composite numbers.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A106543 lists the composite non perfect powers.
Programs
-
Mathematica
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; v=Select[Range[100],perpowQ[#]&]; Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]
-
Python
from sympy import mobius, integer_nthroot, primepi def A378614(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) return -(a:=bisection(f,n,n))+(b:=bisection(lambda x:f(x)+1,a+1,a+1))-primepi(b)+primepi(a)-1 # Chai Wah Wu, Dec 03 2024
Comments