A378622 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the strict partition numbers A000009.
1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 0, -1, -2, -3, 3, 1, 1, 2, 4, 7, 4, 1, 0, -1, -3, -7, -14, 5, 1, 0, 0, 1, 4, 11, 25, 6, 1, 0, 0, 0, -1, -5, -16, -41, 8, 2, 1, 1, 1, 1, 2, 7, 23, 64, 10, 2, 0, -1, -2, -3, -4, -6, -13, -36, -100, 12, 2, 0, 0, 1, 3, 6, 10, 16, 29, 65, 165
Offset: 0
Examples
As a table (read by antidiagonals downward): n=0: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: ---------------------------------------------------------- k=0: 1 1 1 2 2 3 4 5 6 k=1: 0 0 1 0 1 1 1 1 2 k=2: 0 1 -1 1 0 0 0 1 0 k=3: 1 -2 2 -1 0 0 1 -1 0 k=4: -3 4 -3 1 0 1 -2 1 1 k=5: 7 -7 4 -1 1 -3 3 0 -3 k=6: -14 11 -5 2 -4 6 -3 -3 7 k=7: 25 -16 7 -6 10 -9 0 10 -14 k=8: -41 23 -13 16 -19 9 10 -24 24 k=9: 64 -36 29 -35 28 1 -34 48 -34 As a triangle (read by rows): 1 1 0 1 0 0 2 1 1 1 2 0 -1 -2 -3 3 1 1 2 4 7 4 1 0 -1 -3 -7 -14 5 1 0 0 1 4 11 25 6 1 0 0 0 -1 -5 -16 -41 8 2 1 1 1 1 2 7 23 64
Crossrefs
Programs
-
Mathematica
nn=20; t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}]; Table[t[[j,i-j+1]],{i,nn/2},{j,i}]