cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378658 a(n) = A337345(A091191(n)), where A337345 is the number of divisors d of n for which A003961(d) > 2*d, and A091191 lists the primitive abundant numbers.

Original entry on oeis.org

3, 3, 3, 4, 4, 5, 2, 4, 3, 4, 2, 4, 3, 3, 2, 2, 6, 2, 2, 2, 6, 2, 6, 6, 2, 2, 7, 2, 6, 2, 2, 2, 6, 2, 6, 2, 6, 2, 5, 5, 2, 2, 2, 2, 6, 5, 2, 2, 4, 2, 2, 6, 2, 2, 5, 6, 2, 2, 2, 12, 2, 8, 2, 6, 2, 2, 2, 2, 6, 2, 2, 8, 2, 6, 2, 8, 6, 2, 2, 2, 8, 2, 6, 2, 2, 6, 8, 2, 2, 13, 2, 2, 2, 6, 2, 2, 8, 2, 6, 2, 2, 2, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2024

Keywords

Comments

For all n, a(n) > 1. This follows from a proof given in A337372. See also A378662.
Among the initial 10 million terms, there are 7835064 2's.

Crossrefs

Programs

  • Mathematica
    s = Select[Range[2^11], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &];
    Map[Length@ Select[Divisors[#], 2 # < (Times @@ Map[Power @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi[p] + 1], e}] - Boole[# == 1]) &] &, s] (* Michael De Vlieger, Dec 06 2024 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337345(n) = sumdiv(n,d,A003961(d)>(2*d));
    is_A091191(n) = if(sigma(n)<=2*n, 0, fordiv(n,d,if(d2*d, return(0))); (1));
    k=0; n=0; while(k<100000, n++; if(is_A091191(n), k++; print1(A337345(n), ", "); write("b378658.txt", k, " ", A337345(n))));

Formula

{A337345(k) for k such that A080224(k) = 1}.
a(n) = 1+A378662(A091191(n)).