A378658 a(n) = A337345(A091191(n)), where A337345 is the number of divisors d of n for which A003961(d) > 2*d, and A091191 lists the primitive abundant numbers.
3, 3, 3, 4, 4, 5, 2, 4, 3, 4, 2, 4, 3, 3, 2, 2, 6, 2, 2, 2, 6, 2, 6, 6, 2, 2, 7, 2, 6, 2, 2, 2, 6, 2, 6, 2, 6, 2, 5, 5, 2, 2, 2, 2, 6, 5, 2, 2, 4, 2, 2, 6, 2, 2, 5, 6, 2, 2, 2, 12, 2, 8, 2, 6, 2, 2, 2, 2, 6, 2, 2, 8, 2, 6, 2, 8, 6, 2, 2, 2, 8, 2, 6, 2, 2, 6, 8, 2, 2, 13, 2, 2, 2, 6, 2, 2, 8, 2, 6, 2, 2, 2, 4, 6
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
Mathematica
s = Select[Range[2^11], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &]; Map[Length@ Select[Divisors[#], 2 # < (Times @@ Map[Power @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi[p] + 1], e}] - Boole[# == 1]) &] &, s] (* Michael De Vlieger, Dec 06 2024 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A337345(n) = sumdiv(n,d,A003961(d)>(2*d)); is_A091191(n) = if(sigma(n)<=2*n, 0, fordiv(n,d,if(d
2*d, return(0))); (1)); k=0; n=0; while(k<100000, n++; if(is_A091191(n), k++; print1(A337345(n), ", "); write("b378658.txt", k, " ", A337345(n))));
Comments