A378662 Number of divisors d of n such that sigma(d) <= 2*d < A003961(d), where A003961 is fully multiplicative with a(p) = nextprime(p).
0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 0, 0, 3, 0, 0, 2, 3, 0, 3, 0, 4, 0, 0, 1, 3, 0, 0, 1, 3, 0, 3, 0, 2, 3, 0, 0, 4, 1, 2, 0, 2, 0, 3, 0, 4, 1, 0, 0, 4, 0, 0, 3, 5, 0, 1, 0, 2, 1, 3, 0, 4, 0, 0, 2, 2, 0, 2, 0, 4, 3, 0, 0, 5, 0, 0, 0, 3, 0, 5, 1, 2, 0, 0, 0, 5, 0, 3, 2, 3, 0, 1, 0, 3, 4
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
Table[Length@ Select[Divisors[n], DivisorSigma[1, #] <= 2 # < (Times @@ Map[Power @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi[p] + 1], e}] - Boole[# == 1]) &], {n, 105}] (* Michael De Vlieger, Dec 06 2024 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A341612(n) = ((sigma(n)<=(2*n))&&((2*n)<A003961(n))); A378662(n) = sumdiv(n,d,A341612(d));
Comments