cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378664 Greatest divisor d of n such that sigma(d) <= 2*d < A003961(d), or 1 if no such divisor exists, where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 1, 1, 4, 1, 6, 1, 8, 9, 10, 1, 6, 1, 14, 15, 16, 1, 9, 1, 10, 21, 1, 1, 8, 1, 1, 27, 28, 1, 15, 1, 32, 1, 1, 35, 9, 1, 1, 39, 10, 1, 21, 1, 44, 45, 1, 1, 16, 49, 50, 1, 52, 1, 27, 1, 28, 57, 1, 1, 15, 1, 1, 63, 64, 1, 6, 1, 68, 69, 35, 1, 9, 1, 1, 75, 76, 1, 39, 1, 16, 81, 1, 1, 28, 1, 1, 1, 44, 1, 45, 91, 92
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2024

Keywords

Comments

Largest term of {1} U A341614 that divides n.

Crossrefs

Positions of fixed points (where a(n)=n) is given by {1} U A341614.
Cf. A246281 (positions of 1's), A246282 (of terms > 0), A005101 (of terms that are neither 1 nor fixed points).

Programs

  • Mathematica
    Table[If[Length[#] == 0, 1, Max[#]] &@ Select[Divisors[n], DivisorSigma[1, #] <= 2 # < (Times @@ Map[Power @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi[p] + 1], e}] - Boole[# == 1]) &], {n, 92}] (* Michael De Vlieger, Dec 06 2024 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A341612(n) = ((sigma(n)<=(2*n))&&((2*n)<A003961(n)));
    A378664(n) = { fordiv(n,d,if(A341612(n/d), return(n/d))); (1); };

Formula

a(n) <= A378665(n).