cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378669 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^(4/3)/(1 - x*A(x)^(4/3)) )^3.

Original entry on oeis.org

1, 3, 21, 187, 1878, 20277, 229806, 2696523, 32478204, 399230972, 4988220669, 63165060093, 808828667104, 10455471983550, 136255868388684, 1788233397919211, 23614059664575324, 313531617379965156, 4183068478829324388, 56052027108881747724, 754020313029799707018
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(4*n+k+3, n)/(4*n+k+3));
    
  • PARI
    a(n, r=3, s=1, t=5, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: exp( 3/4 * Sum_{k>=1} A378613(k) * x^k/k ).
G.f.: B(x)^3 where B(x) is the g.f. of A243667.
a(n) = 3 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+3,n)/(4*n+k+3).
a(n) = 3 * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(n-1,n-k)/(4*n+k+3).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/3)/(1 - x*A(x)^(4/3)) )^3.

A378670 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^(3/2)/(1 - x*A(x)^(3/2)) )^2.

Original entry on oeis.org

1, 2, 11, 78, 627, 5432, 49464, 466726, 4522871, 44747874, 450127999, 4589821576, 47333631828, 492836382192, 5173697858508, 54700317431958, 581946708333055, 6225343630256678, 66921440314606905, 722546760572660030, 7832054418695360555, 85198490262065775840
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(3*n+k+2, n)/(3*n+k+2));
    
  • PARI
    a(n, r=2, s=1, t=4, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: exp( 2/3 * Sum_{k>=1} A378612(k) * x^k/k ).
G.f.: B(x)^2 where B(x) is the g.f. of A243659.
a(n) = 2 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(3*n+k+2,n)/(3*n+k+2).
a(n) = 2 * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(n-1,n-k)/(3*n+k+2).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^2/(1 - x*A(x)^(3/2)) )^2.
Showing 1-2 of 2 results.