A378675 Areas of trapezoids with exactly one pair of parallel sides having prime sides and height.
15, 21, 27, 27, 45, 45, 55, 63, 65, 81, 85, 85, 95, 99, 115, 117, 125, 125, 135, 145, 155, 171, 175, 175, 185, 189, 205, 207, 225, 235, 243, 245, 265, 275, 279, 295, 297, 315, 315, 325, 333, 335, 355, 365, 385, 387, 405, 407, 425, 451, 455, 459, 473, 475, 475
Offset: 1
Keywords
Examples
27 is twice in the sequence because there are two distinct trapezoids [p, d, q, f, h] (p and q are parallel, height h) with prime sides and height and area 27: [13, 5, 5, 5, 3], [11, 3, 7, 5, 3].
Links
- Felix Huber, Table of n, a(n) for n = 1..2633
- Felix Huber, Trapezoids having prime sides and height with area A
Crossrefs
Programs
-
Maple
with(NumberTheory): A378675:=proc(A) local m,p,q,i,j,d,f,h,x,y,M,T; if isprime(A)=false and A>1 then T:=[]; M:=map(x->A/x,select(isprime,(Divisors(A)) minus {2})); for m in M do for i to pi(floor(m-1/2)) do q:=ithprime(i); p:=2*m-q; if isprime(p) then h:=A/m; for x from max(4,floor((p-q+1)/2)) by 2 to (h^2-1)/2 do y:=p-q-x; if issqr(x^2+h^2) and issqr(y^2+h^2) then d:=isqrt(y^2+h^2); f:=isqrt(x^2+h^2); if isprime(d) and isprime(f) then T:=[op(T),A] fi fi od fi od od; return op(T) fi; end proc; seq(A378675(A),A=1..475);