cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378676 a(n) = J(n) * J(n+2) where J(n) = Jacobsthal(n) = A001045(n).

Original entry on oeis.org

0, 3, 5, 33, 105, 473, 1785, 7353, 28985, 116793, 465465, 1865273, 7454265, 29830713, 119295545, 477236793, 1908837945, 7635570233, 30541844025, 122168249913, 488671252025, 1954688503353, 7818747022905, 31275002072633, 125099980328505, 500399977238073, 2001599797104185, 8006399412112953, 32025597201059385
Offset: 0

Views

Author

Werner Schulte, Dec 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (4^(n+1) - 5*(-2)^n + 1)/9; Array[a, 30, 0] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    a(n)=(4^(n+1)-5*(-2)^n+1)/9

Formula

a(n) = (2^n - (-1)^n) * (2^(n+2) - (-1)^n) / 9 = (4 * 4^n - 5 * (-2)^n + 1) / 9.
G.f.: x * (3 - 4*x) / ((1-x) * (1+2*x) * (1-4*x)).
a(n) = 3 * a(n-1) + 6 * a(n-2) - 8 * a(n-3) for n > 2 with initial values a(0) = 0, a(1) = 3, and a(2) = 5.
Sum_{k=1..n-1} 2^(k-1) / a(k) = 1 - 2^(n-1) / A084175(n) for n > 0.
Sum_{k>0} 2^(k-1) / a(k) = 1.
E.g.f.: exp(x)*(1 - cosh(3*x) + 9*sinh(3*x))/9. - Stefano Spezia, Dec 06 2024