A378685 G.f. A(x) satisfies A(x) = 1 + x*A(x)^7/(1 - x*A(x)^3).
1, 1, 8, 88, 1126, 15716, 232069, 3564835, 56382489, 912031280, 15018257510, 250913307393, 4242722219425, 72470224174650, 1248608968982903, 21673752440979879, 378677335852165297, 6654158090059397480, 117523324766568499072, 2085095374834405245007
Offset: 0
Keywords
Programs
-
PARI
a(n, r=1, s=1, t=7, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
Formula
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^6/(1 - x*A(x)^3)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).