cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378690 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(7/2)/(1 - x*A(x)) )^2.

Original entry on oeis.org

1, 2, 17, 190, 2438, 33938, 498413, 7602010, 119261202, 1912171310, 31194947785, 516153663072, 8641160417191, 146105874059670, 2491396820758004, 42795782630083868, 739842609794223330, 12862556429464405500, 224744883747568868574, 3944534317072930309360
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=7, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3/(1 - x*A(x)) )^2.
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A378688.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).