cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378702 Primes p such that 256*p^8 + 1 is prime.

Original entry on oeis.org

2, 59, 271, 281, 433, 467, 587, 971, 1039, 1097, 1181, 1277, 1283, 1361, 1373, 1427, 1447, 1481, 1579, 1657, 1777, 2089, 2129, 2269, 2381, 2617, 2753, 2803, 2939, 3181, 3319, 3691, 3823, 4093, 4217, 4241, 4327, 4909, 4999, 5279, 5303, 5387, 5483, 6043, 6121, 6197, 6221, 6563, 6577, 7159, 7243, 7867
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 04 2024

Keywords

Crossrefs

Primes p such that (2*p)^(2^n) + 1 is prime: A005384 (n = 0), A052291 (n = 1), A378146 (n = 2), this sequence (n = 3).

Programs

  • Magma
    [p: p in PrimesUpTo(8000) | IsPrime(256*p^8 + 1)];
    
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(2*#)^8 + 1] &] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    select(p->isprime(256*p^8+1), primes(10^6)) \\ Charles R Greathouse IV, Dec 04 2024

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 04 2024