cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378707 Array read by ascending antidiagonals: A(n,k) is the total number of inner points of n-Fibonacci polyominoes with k columns, where k > 0.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 0, 5, 10, 7, 0, 7, 18, 26, 15, 0, 9, 26, 50, 63, 30, 0, 11, 34, 74, 124, 143, 58, 0, 13, 42, 98, 190, 296, 313, 109, 0, 15, 50, 122, 254, 457, 679, 668, 201, 0, 17, 58, 146, 318, 622, 1070, 1517, 1398, 365, 0, 19, 66, 170, 382, 782, 1461, 2439, 3325, 2883, 655
Offset: 2

Views

Author

Stefano Spezia, Dec 05 2024

Keywords

Examples

			The array begins as:
  0,  1,  3,   7,  15,  30,   58,  109,   201,   365, ...
  0,  3, 10,  26,  63, 143,  313,  668,  1398,  2883, ...
  0,  5, 18,  50, 124, 296,  679, 1517,  3325,  7184, ...
  0,  7, 26,  74, 190, 457, 1070, 2439,  5453, 12013, ...
  0,  9, 34,  98, 254, 622, 1461, 3361,  7583, 16857, ...
  0, 11, 42, 122, 318, 782, 1854, 4272,  9681, 21615, ...
  0, 13, 50, 146, 382, 942, 2238, 5182, 11754, 26302, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_]:=SeriesCoefficient[y((6-4n)y-(2-4n)y^2-(3-n)n y^n-2(2-n)^2y^(n+1)+(2-5n+n^2)y^(n+2)+2y^(2n+1))/(2(-1+y)(1-2y+y^(n+1))^2), {y, 0, k}]; Table[A[n-k+1, k], {n, 2, 12}, {k, n-1}]//Flatten

Formula

A(n, k) = [y^k] y*((6 - 4*n)*y - (2 - 4*n)*y^2 - (3 - n)*n*y^n -2*(2 - n)^2*y^(n+1) + (2 - 5*n + n^2)*y^(n+2) + 2*y^(2n+1))/(2*(-1 + y)*(1 - 2*y + y^(n+1))^2).
A(2, n) = A023610(n-2) for n > 1.