cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378716 Triangle read by rows: T(n,k) is the number of k-Fibonacci polyominoes with an area of n, with k > 1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 3, 0, 1, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 5, 3, 1, 1, 0, 0, 0, 1, 7, 1, 1, 1, 0, 0, 0, 0, 1, 9, 5, 2, 0, 1, 0, 0, 0, 0, 1, 12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1, 16, 3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 21, 10, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 3

Views

Author

Stefano Spezia, Dec 05 2024

Keywords

Examples

			The triangle begins as:
   1;
   1, 1;
   1, 0, 1;
   2, 1, 0, 1;
   2, 2, 0, 0, 1;
   3, 0, 1, 0, 0, 1;
   4, 2, 1, 0, 0, 0, 1;
   5, 3, 1, 1, 0, 0, 0, 1;
   7, 1, 1, 1, 0, 0, 0, 0, 1;
   9, 5, 2, 0, 1, 0, 0, 0, 0, 1;
  12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A079957 (k=3), A182097 (k=2), A378704, A378706, A378707.

Programs

  • Mathematica
    T[n_, k_]:=SeriesCoefficient[1/(1-Sum[x^((k+i)(k-i+1)/2), {i, k}]), {x, 0, n}]; Table[T[n, k], {n, 2, 14}, {k, 2,n}]//Flatten

Formula

T(n, k) = [x^n] 1/(1 - Sum_{i=1..k} x^((k+i)*(k-i+1)/2) ).