cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378747 a(n) = A048673(n) - A001065(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 7, 9, 3, 6, 7, 8, 7, 9, 26, 9, 17, 11, 10, 17, 6, 14, 32, 19, 10, 50, 22, 15, 11, 18, 91, 18, 9, 26, 58, 20, 13, 26, 45, 21, 29, 23, 19, 55, 18, 26, 127, 53, 31, 27, 31, 29, 122, 29, 85, 35, 15, 30, 50, 33, 22, 97, 302, 41, 20, 35, 28, 46, 42, 36, 215, 39, 22, 74, 40, 53, 38, 41, 178, 273, 21
Offset: 1

Views

Author

Antti Karttunen, Dec 09 2024

Keywords

Crossrefs

Cf. A000203, A001065, A003961, A048673, A337378 (where a(n) > n), A337379 (where a(n) <= n), A378748 (Möbius transform), A378749 (Dirichlet inverse).
Cf. also A286385, A349573.

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A378747(n) = (A048673(n)-(sigma(n)-n));

Formula

a(n) = n + (A003961(n)+1)/2 - A000203(n).

A378750 Dirichlet inverse of A377984, where A377984(n) = 2*sigma(n) - A003961(n).

Original entry on oeis.org

1, -3, -3, 4, -5, 9, -5, 0, 8, 15, -11, -8, -11, 15, 17, 8, -17, -24, -17, -16, 21, 33, -19, 0, 12, 33, 24, -8, -29, -51, -27, 24, 35, 51, 31, 56, -35, 51, 39, 0, -41, -63, -41, -40, -28, 57, -43, 0, 32, -36, 53, -32, -49, -72, 57, 0, 57, 87, -59, 48, -57, 81, -4, 88, 61, -105, -65, -64, 67, -93, -71, 0, -69, 105
Offset: 1

Views

Author

Antti Karttunen, Dec 09 2024

Keywords

Crossrefs

Cf. also A378749.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A377984(n) = (2*sigma(n) - A003961(n));
    memoA378750 = Map();
    A378750(n) = if(1==n,1,my(v); if(mapisdefined(memoA378750,n,&v), v, v = -sumdiv(n,d,if(dA377984(n/d)*A378750(d),0)); mapput(memoA378750,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA377984(n/d) * a(d).
Showing 1-2 of 2 results.