A379162 Ulam numbers that are sphenics.
102, 114, 138, 182, 238, 258, 273, 282, 370, 402, 429, 434, 483, 602, 627, 646, 861, 986, 1023, 1030, 1311, 1335, 1338, 1406, 1462, 1790, 1834, 1902, 1946, 2054, 2093, 2134, 2247, 2330, 2354, 2445, 2486, 2613, 2630, 2635, 2674, 2919, 2985, 3070, 3219, 3395
Offset: 1
Keywords
Examples
102 is a term because 102=2*3*17 is the product of 3 distinct primes and 102 is an Ulam number. 114 is a term because 114=2*3*19 is the product of 3 distinct primes and 114 is an Ulam number. 273 is a term because 273=3*7*13 is the product of 3 distinct primes and 273 is an Ulam number.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^4: # for terms <= N U:= [1, 2]: V:= Vector(N): V[3]:= 1: R:= NULL: for i from 3 do for k from U[-1]+1 to N do if V[k] = 1 then J:= select(`<=`, U +~ k, N); V[J]:= V[J] +~ 1; U:= [op(U), k]; F:= ifactors(k)[2]: if F[.., 2] = [1, 1, 1] then R:= R, k; break fi od; if k > N then break fi; od: R; # Robert Israel, Jan 03 2025
-
Mathematica
seq[numUlams_] := Module[{ulams = {1, 2}}, Do[AppendTo[ulams, n = Last[ulams]; While[n++; Length[DeleteCases[Intersection[ulams, n - ulams], n/2, 1, 1]] != 2]; n], {numUlams}]; Select[ulams, FactorInteger[#][[;; , 2]] == {1, 1, 1} &]]; seq[300] (* Amiram Eldar, Dec 17 2024, after Jean-François Alcover at A002858 *)
Comments