cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378809 Triangle read by rows: T(n,k) is the number of peak and valleyless Motzkin meanders of length n with k horizontal steps.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 9, 4, 1, 1, 7, 15, 16, 5, 1, 1, 8, 27, 34, 25, 6, 1, 1, 10, 37, 76, 65, 36, 7, 1, 1, 11, 55, 124, 175, 111, 49, 8, 1, 1, 13, 69, 216, 335, 351, 175, 64, 9, 1, 1, 14, 93, 309, 675, 776, 637, 260, 81, 10, 1
Offset: 0

Views

Author

John Tyler Rascoe, Dec 08 2024

Keywords

Comments

Motzkin meanders are lattice paths starting at (0,0) with steps Up (0,1), Horizontal (1,0), and Down (0,-1) that stay weakly above the x-axis. Peak and valleyless Motzkin meanders avoid UD and DU.

Examples

			The triangle begins
   k=0   1   2   3   4   5   6   7
 n=0 1;
 n=1 1,  1;
 n=2 1,  2,  1;
 n=3 1,  4,  3,  1;
 n=4 1,  5,  9,  4,  1;
 n=5 1,  7, 15, 16,  5,  1;
 n=6 1,  8, 27, 34, 25,  6,  1;
 n=7 1, 10, 37, 76, 65, 36,  7,  1;
 ...
T(3,0) = 1: UUU.
T(3,1) = 4: UUH, UHU, UHD, HUU.
T(3,2) = 3: UHH, HHU, HUH.
T(3,3) = 1: HHH.
		

Crossrefs

Cf. column k=1 A001651, A005773, A088855, column k=2 A247643, row sums A308435, A378810.

Programs

  • PARI
    A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
    A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); for(n=0,N-1,print(Vecrev(polcoeff(h,n))))}
    A_xy(10)

Formula

G.f.: Sum_{n>=0} 1/(1-y*x)^(n+1) * ([n=0] + Sum_{k=1..n} A088855(n,k)*x^(n+k-1)*y^(k-1)).