A378823 Decimal expansion of the surface area of a pentagonal icositetrahedron with unit shorter edge length.
5, 4, 7, 9, 6, 5, 4, 9, 4, 3, 8, 6, 5, 9, 6, 9, 3, 3, 9, 7, 6, 3, 5, 0, 2, 3, 1, 5, 2, 5, 9, 0, 1, 9, 0, 9, 0, 8, 7, 0, 8, 6, 4, 4, 3, 9, 8, 5, 2, 3, 7, 0, 6, 8, 8, 8, 2, 1, 3, 8, 0, 5, 9, 7, 0, 3, 6, 8, 0, 1, 7, 8, 0, 1, 1, 5, 2, 1, 6, 8, 3, 8, 7, 4, 3, 0, 0, 5, 7, 8
Offset: 2
Examples
54.79654943865969339763502315259019090870864439852...
Links
- Paolo Xausa, Table of n, a(n) for n = 2..10000
- Eric Weisstein's World of Mathematics, Pentagonal Icositetrahedron.
- Wikipedia, Pentagonal icositetrahedron.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Root[#^6 - 3060*#^4 + 185328*#^2 - 39517632 &, 2], 10, 100]] (* or *) First[RealDigits[PolyhedronData["PentagonalIcositetrahedron", "SurfaceArea"], 10, 100]]
Formula
Equals 24*(1 + s)^2*(2 + 3*s)/(1 + 2*s)*sqrt((1 - s)/(1 + s)), where s = (A058265 - 1)/2.
Equals the positive real root of x^6 - 3060*x^4 + 185328*x^2 - 39517632.
Comments