cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378830 G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).

Original entry on oeis.org

1, 1, 4, 11, 42, 153, 610, 2459, 10252, 43409, 187057, 816018, 3600270, 16030706, 71959064, 325263050, 1479270802, 6764056992, 31078467690, 143411844050, 664352697921, 3088451702294, 14403683874057, 67371591912847, 315969606711112, 1485546933158293, 7000321009422438, 33057274408834760
Offset: 1

Views

Author

Paul D. Hanna, Dec 08 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(1 - x^(2*n+1))^n = 0.

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 11*x^4 + 42*x^5 + 153*x^6 + 610*x^7 + 2459*x^8 + 10252*x^9 + 43409*x^10 + 187057*x^11 + 816018*x^12 + ...
RELATED SERIES.
P(x) = Sum_{n>=0} A(x)^n * (1 + A(x)^(2*n+1))^(n+1) = 1 + 2*x + 3*x^2 + 11*x^3 + 37*x^4 + 142*x^5 + 558*x^6 + 2279*x^7 + 9512*x^8 + 40490*x^9 + 174938*x^10 + 765476*x^11 + 3384754*x^12 + ...
Q(x) = Sum_{n>=0} A(x)^(2*n^2) / (1 + A(x)^(2*n+1))^n = 1 + x^2 + 2*x^3 + 9*x^4 + 29*x^5 + 117*x^6 + 448*x^7 + 1840*x^8 + 7587*x^9 + 32176*x^10 + 138061*x^11 + 601438*x^12 + ...
where 1/x = P(x) + Q(x)/A(x).
SPECIFIC VALUES.
The radius of convergence of A(x) is r = 0.20038502229069403084620325...
  where A(r) = 0.4235821265247070959910742044905... is a relative maximum.
A(t) = 1/3 at t = 0.19298266815962402196002999560324674579680552969760...
  where t = 1/Sum_{n=-oo..+oo} 3*(1/3 + 1/3^(2*n))^n.
A(t) = 1/4 at t = 0.17130301690449912394460704626585777982140255712239...
  where t = 1/Sum_{n=-oo..+oo} 4*(1/4 + 1/4^(2*n))^n.
A(t) = 1/5 at t = 0.15033802491039176999109756769243883091099790716207...
  where t = 1/Sum_{n=-oo..+oo} 5*(1/5 + 1/5^(2*n))^n.
A(1/5) = 0.40253057450577597376072876549180046708653413735166...
A(1/6) = 0.23753161877865991223985753270425915308397301411583...
A(1/7) = 0.18514087266912257977795325275140987102038951384383...
A(1/8) = 0.15359127433897786786958778886350143695575182881679...
A(1/10) = 0.1157765216505016369845861113674765481114936795655...
		

Crossrefs

Cf. A378264.

Programs

  • PARI
    {a(n) = my(V=[0,1],A); for(i=1,n, V=concat(V,0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A,#A, A^m*(1 + A^(2*m+1))^(m+1) ), #V-3); ); polcoef(A,n)}
    for(n=1,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).
(2) A(x) = x * Sum_{n=-oo..+oo} A(x)^(2*n^2) / (1 + A(x)^(2*n+1))^n.
(3) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^n * (1 + A(x)^(2*n+1))^n.
(4) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(2*n*(n+1)) / (1 + A(x)^(2*n+1))^(n+1).