A378836 a(n) is the number of n-digit nonnegative integers with the median of the digits equal to the digital root.
10, 1, 131, 474, 10233, 50844, 1001250, 5225775, 99980565, 536333508, 9998984322, 55188464010, 999994914558, 5683515922236, 100001648752524, 585428890525092, 10000105972653645, 60302140270087340, 1000004027662440330, 6207976859006478708, 100000111315410065850
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..43
Programs
-
Mathematica
A010888[n_]:=If[n==0,0,n - 9*Floor[(n-1)/9]]; a[n_]:=If[n==1,10,Module[{c=0}, For[k=10^(n-1), k<=10^n-1, k++, If[Median[IntegerDigits[k]]==A010888[k], c++]]; c]]; Array[a, 6]
-
Python
from math import prod, factorial from collections import Counter from sympy.utilities.iterables import partitions def A378836(n): if n==1: return 10 c, f = 0, factorial(n-1) for i in range(1,9*n+1): for s,p in partitions(i,m=n,k=9,size=True): a = sorted(list(Counter(p).elements())+[0]*(n-s)) b = a[len(a)-1>>1]+a[len(a)>>1] if b&1^1 and b>>1 == 1+(i-1)%9: v = list(p.values()) p = prod((factorial(i) for i in v))*factorial(n-s) c += sum(f*i//p for i in v) return c # Chai Wah Wu, Dec 12 2024
Extensions
a(11)-a(21) from Chai Wah Wu, Dec 12 2024