A378838 a(n) is the number of n-digit nonnegative integers with the mean of the digits equal to the digital root.
10, 1, 1, 748, 1, 1, 373327, 1, 1, 900000000, 1, 1, 118641180477, 1, 1, 70265700376176, 1, 1, 473609016175792282, 1, 1, 25843609164809475416, 1, 1, 15917111940073972644247, 1, 1, 319908753084273214311674685, 1, 1, 6159986083122001233681300544, 1, 1, 3860982462614939076156553701616, 1, 1
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..81
Programs
-
Mathematica
A010888[n_]:=If[n==0,0,n - 9*Floor[(n-1)/9]]; a[n_]:=If[n==1,10,Module[{c=0}, For[k=10^(n-1), k<=10^n-1, k++, If[Mean[IntegerDigits[k]]==A010888[k], c++]]; c]]; Array[a, 6]
-
Python
from math import prod, factorial from sympy.utilities.iterables import partitions def A378838(n): if n==1: return 10 if n%3!=1: return 1 k, c, f = n%9, 0, factorial(n-1) a = 3*n if k==4 or k==7 else n for i in range(a,9*n+1,a): for s,p in partitions(i,m=n,k=9,size=True): v = list(p.values()) p = prod((factorial(i) for i in v))*factorial(n-s) c += sum(f*i//p for i in v) return c # Chai Wah Wu, Dec 12 2024
Formula
Conjecture: a(A007494(n)) = 1.
From Chai Wah Wu, Dec 12 2024: (Start)
The above conjecture is true, i.e. if n == 0 or 2 mod 3, then a(n) = 1.
Proof: if m is a n-digit integer with mean of digits equal to its digital root k, then sum of digits of m is k*n.
Then m mod 9 = k*n mod 9. Since the digital root is k = 1 + (m-1) mod 9, this means that k = 1 + (k*n-1) mod 9. As 1<=k<=9, for n == 2, 3, 5, 6, 8, 9 mod 9 the only k that satisfies this equation is k=9. Then the only corresponding m whose digit sum is 9*n is 10^n-1. Thus a(n) = 1.
Other results:
Theorem 1: If n == 4 or 7 mod 9, then a(n) is the number of n-digit nonnegative integers with digit sum a multiple of 3*n.
Proof: Follows from the fact that the only k that satisfies k = 1 + (k*n-1) mod 9 is k = 3, 6, or 9.
Theorem 2: If n>1 and n == 1 mod 9, then a(n) is the number of n-digit nonnegative integers with digit sum a multiple of n.
Proof: Since n>1, the digital root of an n-digit integer is > 0. The result then follows from the fact that k = 1 + (k*n-1) mod 9 is satisfied for all 1<=k<=9.
(End)
Extensions
a(11)-a(36) from Chai Wah Wu, Dec 12 2024