A378854 a(n) is the number of solid (3D) partitions of n with 2 layers and second layer a plane partition of 2.
3, 9, 24, 51, 111, 213, 414, 756, 1374, 2409, 4206, 7152, 12096, 20109, 33198, 54111, 87648, 140520, 223953, 354006, 556419, 868584, 1348857, 2082225, 3198927, 4888944, 7438548, 11265141, 16990077, 25516401, 38175240, 56894490, 84490935, 125028489, 184400952
Offset: 4
Keywords
Examples
a(4)=3 since the 3 solid partitions of {2,2} are: [{{2}},{{2}}], [{{1,1}},{{1,1}}], [{{1},{1}},{{1},{1}}] a(5)=9 since the 9 solid partitions of {3,2} are: [{{3}},{{2}}], [{{2,1}},{{2}}], [{{2,1}},{{1,1}}], [{{1,1,1}},{{1,1}}], [{{2},{1}},{{2}}], [{{2},{1}},{{1},{1}}],[{{1,1},{1}},{{1,1}}], [{{1,1},{1}},{{1},{1}}], [{{1},{1},{1}},{{1},{1}}]
Links
- Wouter Meeussen Mma functions for plane and solid partitions
Programs
-
Mathematica
Table[Length@solidformBTK[{n-2,2}],{n,4,22}] (* uses functions defined in link above *)
-
PARI
A_x(N) = {my(x='x+O('x^N)); Vec(3*x^2*(prod(i=1,N, 1/(1-x^i)^i)-prod(i=1,N, 1/(1-x^i))))} A_x(40) \\ John Tyler Rascoe, Feb 20 2025
Formula
From John Tyler Rascoe, Feb 20 2025: (Start)
G.f.: 3*x^2 * (Product_{i>0} (1/(1-x^i)^i) - Product_{i>0} (1/(1-x^i)^i)). (End)
Extensions
a(23) onwards from John Tyler Rascoe, Feb 20 2025
Comments