A378900 Squares of numbers divisible by the squares of two distinct primes.
1296, 5184, 10000, 11664, 20736, 32400, 38416, 40000, 46656, 50625, 63504, 82944, 90000, 104976, 129600, 153664, 156816, 160000, 186624, 194481, 202500, 219024, 234256, 250000, 254016, 291600, 331776, 345744, 360000, 374544, 419904, 455625, 456976, 467856, 490000
Offset: 1
Examples
Let b = A036785. Table of the first 12 terms of this sequence, showing examples of types A, B, and C of coreful pairs of divisors. n a(n) Factors of a(n) b(n) Type B Type C ------------------------------------------------------------- 1 1296 2^4 * 3^4 36 6 * 216 24 * 54 2 5184 2^6 * 3^4 72 6 * 864 48 * 108 3 10000 2^4 * 5^4 100 10 * 1000 40 * 250 4 11664 2^4 * 3^6 108 6 * 1944 24 * 486 5 20736 2^8 * 3^4 144 6 * 3456 54 * 384 6 32400 2^4 * 3^4 * 5^2 180 30 * 1080 120 * 270 7 38416 2^4 * 7^4 196 14 * 2744 56 * 686 8 40000 2^6 * 5^4 200 10 * 4000 80 * 500 9 46656 2^6 * 3^6 216 6 * 7776 48 * 972 10 50625 3^4 * 5^4 225 15 * 3375 135 * 375 11 63504 2^4 * 3^4 * 7^2 252 42 * 1512 168 * 378 12 82944 2^10 * 3^4 288 6 * 13824 54 * 1536
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Listing of select divisor pairs of a(n), n = 1..12, showing divisor pairs of type A in light gray, type B in orange and purple, and type C in black.
Crossrefs
Programs
-
Mathematica
s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}], IntegerQ@ Sqrt[#] &] &[500000]; Union@ Select[s, Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]
Formula
a(n) = A036785(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/6 - (15/Pi^2) * (1 + Sum_{p prime} 1/(p^4-1)) = 0.0015294876575980711757... . - Amiram Eldar, Dec 21 2024
Comments